Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_200_a8, author = {Kh. R. Mamedov and U. Demirbilek}, title = {On the inverse scattering problem for a class of {Sturm--Liouville} operators}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {81--86}, publisher = {mathdoc}, volume = {200}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a8/} }
TY - JOUR AU - Kh. R. Mamedov AU - U. Demirbilek TI - On the inverse scattering problem for a class of Sturm--Liouville operators JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 81 EP - 86 VL - 200 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_200_a8/ LA - ru ID - INTO_2021_200_a8 ER -
%0 Journal Article %A Kh. R. Mamedov %A U. Demirbilek %T On the inverse scattering problem for a class of Sturm--Liouville operators %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 81-86 %V 200 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_200_a8/ %G ru %F INTO_2021_200_a8
Kh. R. Mamedov; U. Demirbilek. On the inverse scattering problem for a class of Sturm--Liouville operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 81-86. http://geodesic.mathdoc.fr/item/INTO_2021_200_a8/
[1] Alimov Sh. A., “O rabotakh A. N. Tikhonova po obratnym zadacham Shturma—Liuvillya”, Usp. mat. nauk., 31:6 (192) (1976), 84–88 | MR | Zbl
[2] Ing Ya., Vei G., “Obratnye zadachi rasseyaniya dlya operatorov Shturma—Liuvillya s granichnymi usloviyami, zavisyaschimi ot spektralnogo parametra”, Mat. zametki., 103:1 (2018), 65–74 | MR
[3] Levitan B. M., “K resheniyu obratnoi zadachi kvantovoi teorii rasseyaniya”, Mat. zametki., 17:4 (1975), 611–624 | MR | Zbl
[4] Lyantse V. E., “Obratnaya zadacha dlya nesamosopryazhennogo operatora”, Dokl. AN SSSR., 166:1 (1966), 30–33 | Zbl
[5] Mamedov Kh. R., “Edinstvennost resheniya obratnoi zadachi teorii rasseyaniya dlya operatora Shturma—Liuvillya so spektralnym parametrom v granichnom uslovii”, Mat. zametki., 74:1 (2003), 142–146 | MR | Zbl
[6] Marchenko V. A., Operatory Shturma—Liuvilya i ikh prilozheniya, Naukova dumka, K., 1977
[7] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969
[8] Pocheikina-Fedotova E. A., “Ob obratnoi kraevoi zadache na poluosi dlya differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Mat., 1972, no. 7, 75–84 | MR
[9] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977
[10] Yurko V. A., “O vosstanovlenii puchkov differentsialnykh operatorov na poluosi”, Mat. zametki., 67:2 (2000), 316–320 | Zbl
[11] Yurko V. A., “Obratnaya zadacha dlya puchkov differentsialnykh operatorov”, Mat. sb., 191:10 (2000), 137–160 | Zbl
[12] Cohen D. S., “An integral transform associated with boundary conditions containing an eigenvalue parameter”, SIAM J. Appl. Math., 14 (1966), 1164–1175 | DOI | MR | Zbl
[13] Fulton C. T., “Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions”, Proc. Roy. Soc. Edingburg Sect. A., 87:1-2 (1980), 1–34 | DOI | Zbl
[14] Levitan B. M., Inverse Sturm–Liouville problems, VNU Science Press, Utrecht, 1987 | Zbl
[15] Mamedov Kh. R., “On the the inverse problem for Sturm–Liouville operator with a nonlinear spectral parameter in the boundary condition”, J. Korean Math. Soc., 46:6 (2009), 1243–1254 | DOI | MR | Zbl
[16] Mamedov Kh. R., Demirbilek U., “A uniqueness theorem of the inverse problem for a class the Sturm–Liouville problem”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 2020, 256–259
[17] Mamedov Kh. R., Koşar P. A., “Inverse scattering problem for Sturm–Liouville operator with a nonlinear dependence on the spectral parameter in the boundary condition”, Math. Meth. Appl. Sci., 34:2 (2011), 231–241 | DOI | Zbl
[18] Yurko V. A., Method of Spectral Mappings in the Inverse Problem Theory, De Gryuter, 2002 | Zbl