On the inverse scattering problem for a class of Sturm--Liouville operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 81-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the positive semi-infinite interval, we consider the inverse scattering problem for the Sturm–Liouville operator with a quadratic polynomial of the spectral parameter in the boundary condition. We define the scattering data of the problem and examine its properties. We derive the main integral equation and show that the potential is uniquely recovered.
Keywords: inverse problem, scattering function, scattering data, spectral parameter, Sturm–Liouville operator.
@article{INTO_2021_200_a8,
     author = {Kh. R. Mamedov and U. Demirbilek},
     title = {On the inverse scattering problem for a class of {Sturm--Liouville} operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {81--86},
     publisher = {mathdoc},
     volume = {200},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a8/}
}
TY  - JOUR
AU  - Kh. R. Mamedov
AU  - U. Demirbilek
TI  - On the inverse scattering problem for a class of Sturm--Liouville operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 81
EP  - 86
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_200_a8/
LA  - ru
ID  - INTO_2021_200_a8
ER  - 
%0 Journal Article
%A Kh. R. Mamedov
%A U. Demirbilek
%T On the inverse scattering problem for a class of Sturm--Liouville operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 81-86
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_200_a8/
%G ru
%F INTO_2021_200_a8
Kh. R. Mamedov; U. Demirbilek. On the inverse scattering problem for a class of Sturm--Liouville operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 81-86. http://geodesic.mathdoc.fr/item/INTO_2021_200_a8/

[1] Alimov Sh. A., “O rabotakh A. N. Tikhonova po obratnym zadacham Shturma—Liuvillya”, Usp. mat. nauk., 31:6 (192) (1976), 84–88 | MR | Zbl

[2] Ing Ya., Vei G., “Obratnye zadachi rasseyaniya dlya operatorov Shturma—Liuvillya s granichnymi usloviyami, zavisyaschimi ot spektralnogo parametra”, Mat. zametki., 103:1 (2018), 65–74 | MR

[3] Levitan B. M., “K resheniyu obratnoi zadachi kvantovoi teorii rasseyaniya”, Mat. zametki., 17:4 (1975), 611–624 | MR | Zbl

[4] Lyantse V. E., “Obratnaya zadacha dlya nesamosopryazhennogo operatora”, Dokl. AN SSSR., 166:1 (1966), 30–33 | Zbl

[5] Mamedov Kh. R., “Edinstvennost resheniya obratnoi zadachi teorii rasseyaniya dlya operatora Shturma—Liuvillya so spektralnym parametrom v granichnom uslovii”, Mat. zametki., 74:1 (2003), 142–146 | MR | Zbl

[6] Marchenko V. A., Operatory Shturma—Liuvilya i ikh prilozheniya, Naukova dumka, K., 1977

[7] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[8] Pocheikina-Fedotova E. A., “Ob obratnoi kraevoi zadache na poluosi dlya differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Mat., 1972, no. 7, 75–84 | MR

[9] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977

[10] Yurko V. A., “O vosstanovlenii puchkov differentsialnykh operatorov na poluosi”, Mat. zametki., 67:2 (2000), 316–320 | Zbl

[11] Yurko V. A., “Obratnaya zadacha dlya puchkov differentsialnykh operatorov”, Mat. sb., 191:10 (2000), 137–160 | Zbl

[12] Cohen D. S., “An integral transform associated with boundary conditions containing an eigenvalue parameter”, SIAM J. Appl. Math., 14 (1966), 1164–1175 | DOI | MR | Zbl

[13] Fulton C. T., “Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions”, Proc. Roy. Soc. Edingburg Sect. A., 87:1-2 (1980), 1–34 | DOI | Zbl

[14] Levitan B. M., Inverse Sturm–Liouville problems, VNU Science Press, Utrecht, 1987 | Zbl

[15] Mamedov Kh. R., “On the the inverse problem for Sturm–Liouville operator with a nonlinear spectral parameter in the boundary condition”, J. Korean Math. Soc., 46:6 (2009), 1243–1254 | DOI | MR | Zbl

[16] Mamedov Kh. R., Demirbilek U., “A uniqueness theorem of the inverse problem for a class the Sturm–Liouville problem”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 2020, 256–259

[17] Mamedov Kh. R., Koşar P. A., “Inverse scattering problem for Sturm–Liouville operator with a nonlinear dependence on the spectral parameter in the boundary condition”, Math. Meth. Appl. Sci., 34:2 (2011), 231–241 | DOI | Zbl

[18] Yurko V. A., Method of Spectral Mappings in the Inverse Problem Theory, De Gryuter, 2002 | Zbl