On universal Fourier--Walsh series
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 45-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we construct an asymptotic universal function for the spaces $L^{p}(0,1)$, $p\geq1$, with respect to the Walsh system in the sense of gaps (omissions) and signs.
Keywords: Fourier–Walsh coefficients, Fourier series, asymptotic universal function
Mots-clés : norm convergence.
@article{INTO_2021_200_a4,
     author = {M. G. Grigoryan},
     title = {On universal {Fourier--Walsh} series},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {200},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a4/}
}
TY  - JOUR
AU  - M. G. Grigoryan
TI  - On universal Fourier--Walsh series
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 45
EP  - 57
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_200_a4/
LA  - ru
ID  - INTO_2021_200_a4
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%T On universal Fourier--Walsh series
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 45-57
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_200_a4/
%G ru
%F INTO_2021_200_a4
M. G. Grigoryan. On universal Fourier--Walsh series. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 45-57. http://geodesic.mathdoc.fr/item/INTO_2021_200_a4/

[1] Gevorkyan G. G., Navasardyan K. A., “O ryadakh Uolsha s monotonnymi koeffitsientami”, Izv. RAN. Ser. mat., 63:1 (1999), 41–60 | MR | Zbl

[2] Grigoryan M. G., “Predstavlenie funktsii klassov $L^{p}[0,1]$, $p\in[1,2)$, ortogonalnymi ryadami”, Dokl. AN Arm. SSR., 67:5 (1978), 78–98

[3] Grigoryan M. G., “Primer universalnogo ortogonalnogo ryada”, Izv. NAN RA., 35:4 (2000), 44–64 | MR | Zbl

[4] Grigoryan M. G., “Funktsii universalnye otnositelno klassicheskikh sistem”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 2020, 137–143

[5] Grigoryan M. G., Sargsyan A. A., “O strukture funktsii, universalnykh dlya klassov $L^{p}[0,1]$, $p\in(0,1)$”, Mat. sb., 209:1 (2018), 37–58 | MR

[6] Ivanov V. I., “Predstavlenie funktsii ryadami v metricheskikh simmetrichnykh prostranstvakh bez lineinykh funktsionalov”, Tr. Mat. in-ta AN SSSR., 189 (1989), 34–77

[7] Krotov V. G., “Ob universalnykh ryada Fure po sisteme Fabera—Shaudera”, Vestn. MGU. Ser. Mat. Mekh., 4 (1975), 53–57

[8] Luzin N. N., “K osnovnoi teoreme integralnogo ischisleniya”, Mat. sb., 28:2 (1912), 266–294 | Zbl

[9] Menshov D. E., “O ravnomernoi skhodimosti ryadov Fure”, Mat. sb., 53:2 (1942), 67–96 | Zbl

[10] Menshov D. E., “O chastichnykh summakh trigonometricheskikh ryadov”, Mat. sb., 20:2 (1964), 197–238

[11] Talalyan A. A., “O skhodimosti pochti vsyudu podposledovatelnostei chastnykh summ obschikh ortogonalnykh ryadov”, Izv. AN Arm. SSR. Ser. Mat., 10:3 (1957), 17–34 | MR | Zbl

[12] Ulyanov P. L., “Predstavlenie izmerimykh funktsii ryadami i klassy $\varphi(L)$”, Usp. mat. nauk., 27 (1972), 3–52

[13] Birkhoff G. D., “Démonstration d'un théorème élémentaire sur les fonctions entières”, C. R. Acad. Sci. Paris., 189 (1929), 473–475 | Zbl

[14] Grigorian M. G., “On the representation of functions by orthogonal series in weighted $L^{p}$ spaces”, Stud. Math., 134:3 (1999), 207–216 | DOI | Zbl

[15] Grigorian M. G., “On the universal and strong property related to Fourier–Walsh series”, Banach J. Math. Anal., 11:3 (2017), 698–712 | DOI | MR | Zbl

[16] Grigoryan M., “Functions universal with respect to the classical systems”, Adv. Oper. Theory., 5 (2020), 1414–1433 | DOI | MR | Zbl

[17] Grigorian M. G., Galoyan L. N., “On the universal functions”, J. Approx. Theory., 225 (2018), 191–208 | DOI | MR | Zbl

[18] Grigorian M. G., Galoyan L. N., “On Fourier series that are universal modulo signs”, Stud. Math., 249:2 (2019), 215–231 | DOI | Zbl

[19] Grigorian M. G., Grigorian T. M., Sargsyan A. A., “On the universal function for weighted spaces $L_{\mu} ^{p}[0,1]$, $p\geq1$”, Banach J. Math. Anal., 12:1 (2018), 104–125 | DOI | MR | Zbl

[20] Grigorian M. G., Sargsyan A. A., “On the universal function for the class $L^{p}[0,1]$, $p\in(0,1)$”, J. Funct. Anal., 270:8 (2016), 3111–3133 | DOI | MR | Zbl

[21] Grigoryan M., Sargsyan A., “Universal function for a weighted space $L_{\mu}^{1}[0,1]$”, Positivity., 21:3 (2017), 1425–1451 | MR

[22] Grosse-Erdmann K. G., “Holomorphe Monster und universelle Funktionen”, Mitt. Math. Semin. Giessen., 176 (1987), 1–84

[23] Kolmogorov A. N., “Sur les fonctions harmoniques conjugeés et les séries de Fourier”, Fund. Math., 7 (1925), 24–29 | DOI | Zbl

[24] Marcinkiewicz J., “Sur les nombres dérivés”, Fund. Math., 24 (1935), 305–308 | DOI

[25] Paley R. E. A. C., “A remarkable set of orthogonal functions”, Proc. London Math. Soc., 34 (1932), 241–279 | DOI | MR | Zbl

[26] Walsh J. L., “A closed set of normal orthogonal functions”, Am. J. Math., 45:1 (1923), 5–24 | DOI | Zbl

[27] Watari J. C., “Mean convergence of Fourier–Walsh series”, Tôhoku Math. J., 16:2 (1964), 183–188 | DOI | MR | Zbl