Solvability of the mixed problem for a hyperbolic equation in the case of incomplete system of eigenfunctions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 95-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mixed problem for a second-order hyperbolic equation with constant coefficients and a mixed partial derivative is considered. We assume that the roots of the characteristic equation are simple and lie on the positive half-line. The coefficients of the equation and the boundary data are constrained by conditions such that the two-fold completeness of eigenfunctions of the corresponding spectral problem for the differential quadratic pencil is absent. The Poincaré–Cauchy contour integral method is used to obtain various sufficient conditions for the solvability of this problem.
Keywords: mixed problem, hyperbolic equation, eigenfunction, two-fold incompleteness, two-fold expansion, irregular operator pencil, differential pencil, method of contour integral, Poincaré–Cauchy method.
@article{INTO_2021_200_a10,
     author = {V. S. Rykhlov},
     title = {Solvability of the mixed problem for a hyperbolic equation in the case of incomplete system of eigenfunctions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {95--104},
     publisher = {mathdoc},
     volume = {200},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a10/}
}
TY  - JOUR
AU  - V. S. Rykhlov
TI  - Solvability of the mixed problem for a hyperbolic equation in the case of incomplete system of eigenfunctions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 95
EP  - 104
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_200_a10/
LA  - ru
ID  - INTO_2021_200_a10
ER  - 
%0 Journal Article
%A V. S. Rykhlov
%T Solvability of the mixed problem for a hyperbolic equation in the case of incomplete system of eigenfunctions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 95-104
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_200_a10/
%G ru
%F INTO_2021_200_a10
V. S. Rykhlov. Solvability of the mixed problem for a hyperbolic equation in the case of incomplete system of eigenfunctions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 95-104. http://geodesic.mathdoc.fr/item/INTO_2021_200_a10/

[1] Vagabov A. I., “Usloviya korrektnosti odnomernykh smeshannykh zadach dlya giperbolicheskikh sistem”, Dokl. AN SSSR., 155:6 (1964), 1247–1249 | Zbl

[2] Vagabov A. I., Vvedenie v spektralnuyu teoriyu differentsialnykh operatorov, Izd-vo Rostov. un-ta, Rostov-na-Donu, 1994

[3] Gurevich A. P., Khromov A. P., “Operatory differentsirovaniya pervogo i vtorogo poryadkov so znakoperemennoi vesovoi funktsiei”, Mat. zametki., 56:1 (1994), 3–15 | MR | Zbl

[4] Dmitriev O. Yu., “Razlozhenie po sobstvennym funktsiyam differentsialnogo operatora $n$-go poryadka s neregulyarnymi kraevymi usloviyami”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 7:2 (2007), 10–14

[5] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[6] Rasulov M. L., “Issledovanie vychetnogo metoda resheniya nekotorykh smeshannykh zadach dlya differentsialnykh uravnenii”, Mat. sb., 30 (72):3 (1952), 509–528 | Zbl

[7] Rasulov M. L., “Vychetnyi metod resheniya smeshannykh zadach dlya differentsialnykh uravnenii i formula razlozheniya proizvolnoi vektor-funktsii po fundamentalnym funktsiyam granichnoi zadachi s parametrom”, Mat. sb., 48 (90):3 (1959), 277–310 | Zbl

[8] Rasulov M. L., Metod konturnogo integrala i ego primenenie k issledovaniyu zadach dlya differentsialnykh uravnenii, Nauka, M., 1964

[9] Rykhlov V. S., “O kratnoi nepolnote sobstvennykh funktsii puchkov obyknovennykh differentsialnykh operatorov”, Matematika. Mekhanika., 3 (2001), 114–117

[10] Rykhlov V. S., “O svoistvakh sobstvennykh funktsii obyknovennogo differentsialnogo kvadratichnogo puchka vtorogo poryadka”, Integral. preobr. spets. funktsii., 2:1 (2001), 85–103

[11] Rykhlov V. S., “Razlozhenie po sobstvennym funktsiyam kvadratichnykh silno neregulyarnykh puchkov differentsialnykh operatorov vtorogo poryadka”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 13:1 (2013), 21–26 | MR | Zbl

[12] Rykhlov V. S., “O polnote kornevykh funktsii polinomialnykh puchkov obyknovennykh differentsialnykh operatorov s postoyannymi koeffitsientami”, Tavrich. vestn. inform. mat., 1:26 (2015), 69–86

[13] Tamarkin Ya. V., O nekotorykh obschikh zadachakh teorii obyknovennykh differentsialnykh uravnenii i razlozhenii proizvolnykh funktsii v ryady, Petrograd, 1917

[14] Khromov A. P., “Razlozhenie po sobstvennym funktsiyam odnoi kraevoi zadachi tretego poryadka”, Issledovaniya po teorii operatorov, Izd-vo BNTs UrO AN SSSR, Ufa, 1988, 182–193

[15] Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami i nulevoi nachalnoi skorostyu”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 19:3 (2019), 280–288 | MR | Zbl

[16] Khromov A. P., Kornev V. V., “Klassicheskoe i obobschennoe reshenie smeshannoi zadachi dlya neodnorodnogo volnovogo uravneniya”, Dokl. RAN., 484:1 (2019), 18–20 | Zbl

[17] Shkalikov A. A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. semin. im. I. G. Petrovskogo., 9 (1983), 190–229 | Zbl

[18] Birkhoff G. D., “Boundary-value and expansion problems of ordinary linear differential equations”, Trans. Am. Math. Soc., 9 (1908), 373–395 | DOI | Zbl

[19] Cauchy A. L., Mémoire sur l'application du calcal des résidus a la solution des problêmes de physique mathématique, Paris, 1827

[20] Cauchy A. L., Oeuvres compleétes d'Augustin Cauchy (II Série). Tome VII, Paris, 1827

[21] Poincaré H., “Sur les équations de la physique mathḿatique”, Rend. Circ. Mat., 8 (1894), 57–155 | DOI

[22] Tamarkin J. D., “Some general problems of theory of ordinary linear differential equations and expansion of an arbitrary function in series of fundamental functions”, Math. Z., 27 (1927), 1–54 | DOI | Zbl