Polycirculant matrices in discrete harmonic analysis
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 11-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce a definition of a polycirculant matrix; special cases of polycirculant matrices are well-known circulant matrix and binary circulant matrix. Also, we introduce the notion of multi-convolution of discrete signals that are considered with respect to the discrete Vilenkin transform. We prove that all discrete Vilenkin functions are eigenvectors of a polycirculant matrix corresponding to eigenvalues that are discrete spectral characteristics of the original signal. This result is generalized for linear permutations of the discrete Walsh and Chrestenson transforms. Reformulating this result for multiplicative function systems, we arrive at the solution of the problem on extracting an arbitrary harmonic of the original stepped signal by an amplitude-phase operator with group phase shifts.
Mots-clés : circulant matrix, convolution, discrete Fourier transform, permutation.
Keywords: discrete Walsh functions, discrete Chrestenson functions, Kronecker product, eigenvector
@article{INTO_2021_200_a1,
     author = {M. S. Bespalov},
     title = {Polycirculant matrices in discrete harmonic analysis},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {11--28},
     publisher = {mathdoc},
     volume = {200},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a1/}
}
TY  - JOUR
AU  - M. S. Bespalov
TI  - Polycirculant matrices in discrete harmonic analysis
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 11
EP  - 28
VL  - 200
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_200_a1/
LA  - ru
ID  - INTO_2021_200_a1
ER  - 
%0 Journal Article
%A M. S. Bespalov
%T Polycirculant matrices in discrete harmonic analysis
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 11-28
%V 200
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_200_a1/
%G ru
%F INTO_2021_200_a1
M. S. Bespalov. Polycirculant matrices in discrete harmonic analysis. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 11-28. http://geodesic.mathdoc.fr/item/INTO_2021_200_a1/

[1] Akhmed N., Rao K. R., Ortogonalnye preobrazovaniya pri obrabotke tsifrovykh signalov, Svyaz, M., 1980

[2] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969

[3] Bespalov M. S., Matematicheskie metody v informatike i vychislitelnoi tekhnike, v. 2, Vvedenie v prikladnoi garmonicheskii analiz, VlGU, Vladimir, 2007

[4] Bespalov M. S., “Diskretnoe preobrazovanie Uolsha kak stepen dlya novogo proizvedeniya matrits”, Tez. dokl. 14 Saratov. zimnei shkoly, posv. pamyati akad. P. L. Ulyanova, Izd-vo Sarat. un-ta, Saratov, 2008, 14–15

[5] Bespalov M. S., “Sobstvennye podprostranstva diskretnogo preobrazovaniya Uolsha”, Probl. peredachi inform., 46:3 (2010), 60–79, M. | MR | Zbl

[6] Bespalov M. S., “Diskretnye preobrazovaniya Krestensona”, Probl. peredachi inform., 46:4 (2010), 91–115 | MR | Zbl

[7] Bespalov M. S., “O svoistvakh tenzornogo proizvedeniya matrits”, Zh. vychisl. mat. mat. fiz., 54:4 (2014), 547-561 | Zbl

[8] Bespalov M. S., “Svertochnye matritsy”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 2020, 70–72

[9] Bespalov M. S., Golubev A. S., Pochenchuk A. S., “Vyvod bystrykh algoritmov metodom dvoichnoi filtratsii signalov”, Probl. peredachi inform., 52:4 (2016), 49–63 | MR | Zbl

[10] Bespalov M. S., Sklyarenko V. A., Diskretnye funktsii Uolsha i ikh prilozheniya, VlGU, Vladimir, 2014

[11] Bleikhut R., Bystrye algoritmy tsifrovoi obrabotki signalov, Mir, M., 1989

[12] Gantmakher F. M., Teoriya matrits, Nauka, M., 1966

[13] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999

[14] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987

[15] Gold B., Reider Ch., Tsifrovaya obrabotka signalov, Sovetskoe radio, M., 1973

[16] Zalmanzon L. A., Preobrazovaniya Fure, Uolsha, Khaara i ikh primeneniya v upravlenii, svyazi i drugikh oblastyakh, Nauka, M., 1989

[17] Malozemov V. N. (red.), Izbrannye glavy diskretnogo garmonicheskogo analiza i geometricheskogo modelirovaniya, v. 2, SPb., 2014

[18] Malozemov V. N., Lineinaya algebra bez opredelitelei. Kvadratichnaya funktsiya, Izd-vo SPb. un-ta, SPb., 1997

[19] Malozemov V. N., Masharskii S. M., Osnovy diskretnogo garmonicheskogo analiza, Lan, SPb., 2012

[20] Trakhman A. M. , Trakhman V. A., Osnovy teorii diskretnykh signalov na konechnykh intervalakh, Sovetskoe radio, M., 1975

[21] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989

[22] F. Shipp, “O nekotorykh perestanovkakh ryadov po sisteme Uolsha”, Mat. zametki, 18:2 (1975), 193–201 | MR

[23] Bespalov M. S., “Construction and properties of discrete Walsh transform matrices”, Proc. Workshop Dedicated to the Memory of J. E. Gibbs (Nis, Serbia, October 18–19, 2007), Elektronski fakultet, Nis, 2008, 195–208

[24] Beylkin G., Monzon L., “On generalized Gaussian quadratures for exponentials and their applications”, Appl. Comput. Harmon. Anal., 12 (2002), 332–373 | DOI | Zbl

[25] Davis R. J., Circulant matrices, Wiley, New York, 1979 | Zbl

[26] Levy P., “Sur une généralisation des fonctions orthogonales de M. Rademacher”, Comment. Math. Helvet., 16 (1944), 146–152 | DOI | Zbl

[27] Schipp F., Wade W. R., Simon P., Pal J., Walsh series. An introduction to dyadic harmonic analysis, Académiai Kiadó, Budapest, 1990

[28] Sylvester J. J., “Thoughts on inverse orthogonal matrices, simultaneous simg-successions, and tessalated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers”, Phil. Mag., 34:332:ser. 4 (1867), 461–475 | DOI

[29] Vasilchenkova D. G., Danchenko V. I., “Extraction of harmonics from trigonometric polynomials by amplitude and phase transformation”, Mat. VIII Petrozavodsk. Mezhdunar. konf. «Kompleksnyi analiz i ego prilozheniya» (Petrozavodsk, 3–9 iyulya 2016 g.), Petrozavodsk, 2016, 93–95