Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_200_a0, author = {V. Ala and U. Demirbilek and Kh. R. Mamedov}, title = {On an application of improved {Bernoulli} sub-equation function method to the nonlinear conformable time-fractional regularized long wave equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--10}, publisher = {mathdoc}, volume = {200}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_200_a0/} }
TY - JOUR AU - V. Ala AU - U. Demirbilek AU - Kh. R. Mamedov TI - On an application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional regularized long wave equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 3 EP - 10 VL - 200 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_200_a0/ LA - ru ID - INTO_2021_200_a0 ER -
%0 Journal Article %A V. Ala %A U. Demirbilek %A Kh. R. Mamedov %T On an application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional regularized long wave equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 3-10 %V 200 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_200_a0/ %G ru %F INTO_2021_200_a0
V. Ala; U. Demirbilek; Kh. R. Mamedov. On an application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional regularized long wave equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 2, Tome 200 (2021), pp. 3-10. http://geodesic.mathdoc.fr/item/INTO_2021_200_a0/
[1] Abdeljawad T., “On conformable fractional calulus”, J. Comput. Appl. Math., 279 (2015), 57–66 | DOI | MR | Zbl
[2] Akbar M. A., Ali N. H. M., “The improved $F$-expansion method with Riccati equation and its applications in mathematical physics”, Cogent Math., 4 (2017), 1–19 | DOI
[3] Ala V., Demirbilek U., Mamedov Kh. R., “Improved Bernoulli sub-equation function method for exact solutions of conformable time fractional RLW equation”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 2020, 26–29
[4] Alidou M., Kenfack-Jiotsa A., Kofane T. C., “Modulational instability and spatiotemporal transition to chaos”, Chaos Solitons Fractals., 27 (2006), 914–925 | DOI | MR | Zbl
[5] Atangana A., Baleanu D., Alsaedi A., “New properties of conformable derivative”, Open Math., 13 (2015), 1–10 | DOI | MR
[6] Baskonus H. M., Askin M., “Travelling wave simulations to the modified Zakharov–Kuzentsov model arising in plasma physics”, 6 Int. Youth Sci. Forum “Computer Science and Engineering” (Lviv, Ukraine, November 24–26, 2016), Lviv, 2016, 83–86
[7] Baskonus H.M., Bulut H., “Exponential prototype structure for $(2+1)$-dimensional Boiti–Leon–Pempinelli systems in mathematical physics”, Waves Random Complex Media., 26 (2016), 189–196 | DOI | MR | Zbl
[8] Deffo G. R., Yamgoue S. B., Pelap F. B., “Modulational instability and peak solitary wave in a discrete nonlinear electrical transmission line described by the modified extended nonlinear Schrödinger equation”, Eur. Phys. J., B91 (2018) | MR
[9] Fan E., Hon Y. C., “Applications of extended tanh method to special types of nonlinear equations”, Appl. Math. Comput., 141:2-3 (2003), 351–358 | MR | Zbl
[10] Feng Z., “On explicit exact solutions to the compound Burgers–KdV equation”, Phys. Lett., 293 (2002), 57–66 | DOI | MR | Zbl
[11] Fu Y., Li J., “Exact stationary-wave solutions in the standart model of the Kerr-nonlinear optical fiber with the Bragg grating”, J. Appl. Anal. Comput., 7 (2017), 1177–1184 | MR | Zbl
[12] Hosseini K., Ansari K. R., “New exact solutions of nonlinear conformable timefractional Boussinesq equations using the modified Kudryashov method”, Waves Random Complex Media., 2017, 1–9
[13] Hosseini K., Gholamin P., “Feng's first integral method for analytic treatment of two higher dimensional nonlinear partial differantial equations”, Differ. Equations Dynam. Syst., 23 (2015), 317–325 | DOI | Zbl
[14] Inan I. E., Kaya D., “Exact solutions of some nonlinear partial differential equations”, Phys. A., 381 (2007), 104–115 | DOI | MR
[15] Jawad A. J. M., “Soliton solutions for nonlinear systems $(2+1)$-dimensional equations”, IOSR J. Math., 1 (2012), 27–34 | DOI
[16] Khalil R., Al Horani M., Yousef A., Sababheh M., “A new definition of fractional derivative”, J. Comput. Appl. Math., 264 (2014), 65–70 | DOI | MR | Zbl
[17] Korkmaz A., “Exact solutions of space-time fractional EW and modified EW equations”, Chaos Solitons Fractals., 96 (2017), 132–138 | DOI | MR | Zbl
[18] Korkmaz A., “Exact solutions to $(3 + 1)$-conformable time fractional Jimbo–Miwa, Zakharov–Kuznetsov, and modified Zakharov–Kuznetsov equations”, Commun. Theor. Phys., 67 (2017), 479–482 | DOI | Zbl
[19] Korkmaz A., Hosseini K., “Exact solutions of a nonlinear conformable time fractional parabolic equation with exponential nonlinearity using reliable methods”, Opt. Quant. Electron., 49 (2017) | DOI
[20] Kumar D., Singh J., Baleanu D., “A new analysis for fractional model of regularized long wave equation arising in ion acoustic plasma waves”, Math. Meth. Appl. Sci., 40 (2017), 5642–5653 | DOI | Zbl
[21] Kumar D., Singh J., Baleanu D., “Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel”, Phys. A., 492 (2018), 155–167 | DOI | MR
[22] Liu W., Chen K., “The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations”, Pramana., 81:3 (2013), 377–384 | DOI
[23] Lu B., “The first integral method for some time fractional diferential equations”, J. Math. Anal. Appl., 395 (2012), 684–693 | DOI | MR | Zbl
[24] Maucher F., Buccoliero D., Skupin S., Grech M., Desyatnikov A.S., Krolikowski W., “Tracking azimuthons in nonlocal nonlinear media”, Opt. Quantum Electron., 41 (2009), 337–348 | DOI
[25] Mirzazadeh M., “Modified simple equation method and its applications to nonlinear partial differantial equations”, Inf. Sci. Lett., 3 (2014), 1–9 | DOI
[26] Nath R., Pedri P., Santos L., “Stability of dark solitons in three-dimensional dipolar Bose–Einstein condensates”, Phys. Rev. Lett., 101:21 (2008), 914–925 | DOI
[27] Ozpinar F., Baskonus H. M., Bulut H., “On the complex and hyperbolic structures for the $(2+1)$-dimensional Boussinesq water equation”, Entropy., 17 (2015), 8267–8277 | DOI
[28] Rezazadeh H., Kumar D., Sulaiman T. A., Bulut H., “New complex hyperbolic and trigonometric solutions for the generalized conformable fractional Gardner equation”, Mod. Phys. Lett. B., 33:17 (2019), 1950196 | DOI
[29] Sulaiman T. A., Yavuz M., Bulut H., Baskonus H. M., “Investigation of the fractional coupled viscous Burgers equation involving Mittag-Leffler kernel”, Phys. A: Stat. Mech. Appl., 527 (2019), 121–126 | DOI
[30] Tanghizadeh N., Mirzazadeh M., Paghaleh A. S., “Exact solutions of nonlinear evolution equations by using the modified simple equation method”, Ain Shams Eng. J., 3 (2012), 321–325 | DOI
[31] Wazwaz A. M., “Sine-cosine method for handling nonlinear wave equations”, Math. Comput. Model., 40 (2004), 499–508 | DOI | Zbl
[32] Wazwaz A. M., “The extended tanh method for abundant solitary wave solutions of nonlinear wave equations”, Appl. Math. Comput., 187 (2007), 1131–1142 | MR | Zbl
[33] Zhao M., “$F$-Expansion method and its application for finding new exact solutions to the Kudryashov–Sinelshchikov equation”, J. Appl. Math., 2013 (2013), 895760 | Zbl