Differential properties of mappings with $s$-average characteristic
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 80-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we develop the geometric method of moduli of curve families and consider the problem of differential properties of nonhomeomorphic mappings with $s$-averaged characteristic. These properties can be applied in the theory of multidimensional quasiconformal mappings and their generalizations. We prove that if $f$ is an extremal mapping with $s$-averaged characteristic, then it belongs to the class $W^2_2$.
Keywords: homeomorphism, mapping, characteristic, distortion, module of a family of curves.
@article{INTO_2021_199_a8,
     author = {A. N. Malyutina and U. K. Asanbekov and A. V. Novik},
     title = {Differential properties of mappings with $s$-average characteristic},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {80--85},
     publisher = {mathdoc},
     volume = {199},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_199_a8/}
}
TY  - JOUR
AU  - A. N. Malyutina
AU  - U. K. Asanbekov
AU  - A. V. Novik
TI  - Differential properties of mappings with $s$-average characteristic
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 80
EP  - 85
VL  - 199
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_199_a8/
LA  - ru
ID  - INTO_2021_199_a8
ER  - 
%0 Journal Article
%A A. N. Malyutina
%A U. K. Asanbekov
%A A. V. Novik
%T Differential properties of mappings with $s$-average characteristic
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 80-85
%V 199
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_199_a8/
%G ru
%F INTO_2021_199_a8
A. N. Malyutina; U. K. Asanbekov; A. V. Novik. Differential properties of mappings with $s$-average characteristic. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 80-85. http://geodesic.mathdoc.fr/item/INTO_2021_199_a8/

[1] Elizarova M. A., Malyutina A. N., Otobrazheniya s $s$-usrednennoi kharakteristikoi. Opredelenie i svoistva, LAMBERT Academic Publishing, 2013

[2] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya elipticheskogo tipa, Nauka, M., 1973

[3] Malyutina A. N., Alipova K. A., “Variatsii prostranstvennykh negomeomorfnykh otobrazhenii s $s$-usrednennoi kharakteristikoi”, Mat. 19 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 29 yanvarya — 2 fevralya 2018 g.), Nauchnaya kniga, Saratov, 2018, 178–181

[4] Malyutina A. N., Elizarova M.A., “Differentsialnye svoistva otobrazhenii s $s$-usrednennoi kharakteristikoi”, Vestn. Tomsk. un-ta, 2007, no. 300 (I), 124–129

[5] Strugov Yu. F., “Variatsii prostranstvennykh kvazikonformnykh otobrazhenii i ekstremalnye otobrazheniya”, Dinamika sploshnoi sredy., 25 (1976), 154–157 | MR

[6] Strugov Yu. F., “Differentsialnye svoistva ekstremalnykh otobrazhenii, kvazikonformnykh v srednem”, Mat. VII Mezhdunar. mol. nauch.-prakt. konf., posv. 60-letiyu In-ta matematiki im. S. L. Soboleva SO RAN (Omsk, 25 aprelya — 4 maya 2017 g.), Izd-vo Omsk. tekhn. un-ta, Omsk, 2017, 68–70

[7] Alipova K., Elizarova M., Malyutina A., “Examples of the mappings with $s$-averaged characteristic”, Mat. VII Mezhdunar. konf. «Kompleksnyi analiz i ego prilozheniya» (Petrozavodsk, 29 iyunya — 5 iyulya 2014 g.), ed. Starkov V. V., Izd-vo PetrGU, Petrozavodsk, 2014, 12–17