Differential properties of mappings with $s$-average characteristic
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 80-85
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we develop the geometric method of moduli of curve families and consider the problem of differential properties of nonhomeomorphic mappings with $s$-averaged characteristic. These properties can be applied in the theory of multidimensional quasiconformal mappings and their generalizations. We prove that if $f$ is an extremal mapping with $s$-averaged characteristic, then it belongs to the class $W^2_2$.
Keywords: homeomorphism, mapping, characteristic, distortion, module of a family of curves.
@article{INTO_2021_199_a8,
     author = {A. N. Malyutina and U. K. Asanbekov and A. V. Novik},
     title = {Differential properties of mappings with $s$-average characteristic},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {80--85},
     year = {2021},
     volume = {199},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_199_a8/}
}
TY  - JOUR
AU  - A. N. Malyutina
AU  - U. K. Asanbekov
AU  - A. V. Novik
TI  - Differential properties of mappings with $s$-average characteristic
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 80
EP  - 85
VL  - 199
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_199_a8/
LA  - ru
ID  - INTO_2021_199_a8
ER  - 
%0 Journal Article
%A A. N. Malyutina
%A U. K. Asanbekov
%A A. V. Novik
%T Differential properties of mappings with $s$-average characteristic
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 80-85
%V 199
%U http://geodesic.mathdoc.fr/item/INTO_2021_199_a8/
%G ru
%F INTO_2021_199_a8
A. N. Malyutina; U. K. Asanbekov; A. V. Novik. Differential properties of mappings with $s$-average characteristic. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 80-85. http://geodesic.mathdoc.fr/item/INTO_2021_199_a8/

[1] Elizarova M. A., Malyutina A. N., Otobrazheniya s $s$-usrednennoi kharakteristikoi. Opredelenie i svoistva, LAMBERT Academic Publishing, 2013

[2] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya elipticheskogo tipa, Nauka, M., 1973

[3] Malyutina A. N., Alipova K. A., “Variatsii prostranstvennykh negomeomorfnykh otobrazhenii s $s$-usrednennoi kharakteristikoi”, Mat. 19 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 29 yanvarya — 2 fevralya 2018 g.), Nauchnaya kniga, Saratov, 2018, 178–181

[4] Malyutina A. N., Elizarova M.A., “Differentsialnye svoistva otobrazhenii s $s$-usrednennoi kharakteristikoi”, Vestn. Tomsk. un-ta, 2007, no. 300 (I), 124–129

[5] Strugov Yu. F., “Variatsii prostranstvennykh kvazikonformnykh otobrazhenii i ekstremalnye otobrazheniya”, Dinamika sploshnoi sredy., 25 (1976), 154–157 | MR

[6] Strugov Yu. F., “Differentsialnye svoistva ekstremalnykh otobrazhenii, kvazikonformnykh v srednem”, Mat. VII Mezhdunar. mol. nauch.-prakt. konf., posv. 60-letiyu In-ta matematiki im. S. L. Soboleva SO RAN (Omsk, 25 aprelya — 4 maya 2017 g.), Izd-vo Omsk. tekhn. un-ta, Omsk, 2017, 68–70

[7] Alipova K., Elizarova M., Malyutina A., “Examples of the mappings with $s$-averaged characteristic”, Mat. VII Mezhdunar. konf. «Kompleksnyi analiz i ego prilozheniya» (Petrozavodsk, 29 iyunya — 5 iyulya 2014 g.), ed. Starkov V. V., Izd-vo PetrGU, Petrozavodsk, 2014, 12–17