Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_199_a7, author = {I. S. Lomov}, title = {Generalized {d'Alembert} formula for the telegraph equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {66--79}, publisher = {mathdoc}, volume = {199}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_199_a7/} }
TY - JOUR AU - I. S. Lomov TI - Generalized d'Alembert formula for the telegraph equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 66 EP - 79 VL - 199 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_199_a7/ LA - ru ID - INTO_2021_199_a7 ER -
I. S. Lomov. Generalized d'Alembert formula for the telegraph equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 66-79. http://geodesic.mathdoc.fr/item/INTO_2021_199_a7/
[1] Burlutskaya M. Sh., Korzhova Ya. P., “Smeshannaya zadacha dlya volnovogo uravneniya s summiruemym potentsialom na grafe iz dvukh reber”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 80–83
[2] Burlutskaya M. Sh., Khromov A. P, “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 55:2 (2015), 229–241 | MR | Zbl
[3] Kornev V. V., Khromov A. P., “Klassicheskoe i obobschennoe resheniya smeshannoi zadachi dlya neodnorodnogo volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 59:2 (2019), 286–300 | MR | Zbl
[4] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, M., 1950
[5] Lomov I. S., “Metod A. P. Khromova resheniya smeshannoi zadachi dlya giperbolicheskogo uravneniya. Obobschennaya formula Dalambera”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 231–236 | MR | Zbl
[6] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Izd-vo MGU, M., 1999
[7] Khromov A. P., “O skhodimosti formalnogo resheniya po metodu Fure volnovogo uravneniya s summiruemym potentsialom”, Zh. vychisl. mat. mat. fiz., 56:10 (2016), 1795–1809 | Zbl
[8] Khromov A. P., “Neobkhodimye i dostatochnye usloviya suschestvovaniya klassicheskogo resheniya smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya v sluchae summiruemogo potentsiala”, Differ. uravn., 55:5 (2019), 717–731 | MR | Zbl
[9] Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami i nulevoi nachalnoi skorostyu”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 19:3 (2019), 280–288 | MR | Zbl
[10] Khromov A. P., “Raskhodyaschiesya ryady i metod Fure dlya volnovogo uravneniya”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 433–439