Generalized d'Alembert formula for the telegraph equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 66-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine the mixed problem for the telegraph equation with periodic boundary conditions. Using A. P. Khromov's method, we construct a series, which represents the generalized d'Alembert formula for the equation considered. Under minimal conditions for input data, this series gives a generalized solution of the problem. If the criterion of the existence of a (unique) classical solution is fulfilled, then this series also gives a classical solution. The case of a summable potential of the equation is considered. In the case of zero potential, the series mentioned becomes the ordinary d'Alembert formula.
Keywords: Fourier series, contour integral method, hyperbolic equation, generalized solution, classical solution.
@article{INTO_2021_199_a7,
     author = {I. S. Lomov},
     title = {Generalized {d'Alembert} formula for the telegraph equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {66--79},
     publisher = {mathdoc},
     volume = {199},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_199_a7/}
}
TY  - JOUR
AU  - I. S. Lomov
TI  - Generalized d'Alembert formula for the telegraph equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 66
EP  - 79
VL  - 199
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_199_a7/
LA  - ru
ID  - INTO_2021_199_a7
ER  - 
%0 Journal Article
%A I. S. Lomov
%T Generalized d'Alembert formula for the telegraph equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 66-79
%V 199
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_199_a7/
%G ru
%F INTO_2021_199_a7
I. S. Lomov. Generalized d'Alembert formula for the telegraph equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 66-79. http://geodesic.mathdoc.fr/item/INTO_2021_199_a7/

[1] Burlutskaya M. Sh., Korzhova Ya. P., “Smeshannaya zadacha dlya volnovogo uravneniya s summiruemym potentsialom na grafe iz dvukh reber”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 80–83

[2] Burlutskaya M. Sh., Khromov A. P, “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 55:2 (2015), 229–241 | MR | Zbl

[3] Kornev V. V., Khromov A. P., “Klassicheskoe i obobschennoe resheniya smeshannoi zadachi dlya neodnorodnogo volnovogo uravneniya”, Zh. vychisl. mat. mat. fiz., 59:2 (2019), 286–300 | MR | Zbl

[4] Krylov A. N., O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, M., 1950

[5] Lomov I. S., “Metod A. P. Khromova resheniya smeshannoi zadachi dlya giperbolicheskogo uravneniya. Obobschennaya formula Dalambera”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 231–236 | MR | Zbl

[6] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Izd-vo MGU, M., 1999

[7] Khromov A. P., “O skhodimosti formalnogo resheniya po metodu Fure volnovogo uravneniya s summiruemym potentsialom”, Zh. vychisl. mat. mat. fiz., 56:10 (2016), 1795–1809 | Zbl

[8] Khromov A. P., “Neobkhodimye i dostatochnye usloviya suschestvovaniya klassicheskogo resheniya smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya v sluchae summiruemogo potentsiala”, Differ. uravn., 55:5 (2019), 717–731 | MR | Zbl

[9] Khromov A. P., “O klassicheskom reshenii smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya s zakreplennymi kontsami i nulevoi nachalnoi skorostyu”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 19:3 (2019), 280–288 | MR | Zbl

[10] Khromov A. P., “Raskhodyaschiesya ryady i metod Fure dlya volnovogo uravneniya”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 433–439