On the inversion of the Valiant function of the rank rigidity of a matrix
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 60-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The rank function $\mathrm{rank}(A,k)$ of a matrix $A$ is the minimal rank of a matrix obtained from $A$ by changing no more than $k$ of its entries. For an arbitrary matrix, we obtain an upper boundary of $\mathrm{rank}(A,k)$. For rigid matrices, we establish a smooth lower boundary and a precise formula for $\mathrm{rank}(A,k)$. Alos, we show that the rank function of a rigid matrix inverses its regidity function. For rigid matrices, an interpretation of the inverse function of the rigidity function is given.
Keywords: rigidity function of a matrix, rank function of a matrix, upper boundary, lower boundary, inverse function.
Mots-clés : rigid matrix
@article{INTO_2021_199_a6,
     author = {B. V. Konoplev},
     title = {On the inversion of the {Valiant} function of the rank rigidity of a matrix},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {60--65},
     publisher = {mathdoc},
     volume = {199},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_199_a6/}
}
TY  - JOUR
AU  - B. V. Konoplev
TI  - On the inversion of the Valiant function of the rank rigidity of a matrix
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 60
EP  - 65
VL  - 199
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_199_a6/
LA  - ru
ID  - INTO_2021_199_a6
ER  - 
%0 Journal Article
%A B. V. Konoplev
%T On the inversion of the Valiant function of the rank rigidity of a matrix
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 60-65
%V 199
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_199_a6/
%G ru
%F INTO_2021_199_a6
B. V. Konoplev. On the inversion of the Valiant function of the rank rigidity of a matrix. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 60-65. http://geodesic.mathdoc.fr/item/INTO_2021_199_a6/

[1] Grigorev D. Yu., “Ispolzovanie ponyatii otdelimosti i nezavisimosti dlya polucheniya nizhnikh otsenok slozhnosti skhem”, Zap. nauch. semin. LOMI, 60, 1976, 38–48

[2] Kashin B. S., Razborov A. A., “Novye nizhnie otsenki ustoichivosti matrits Adamara”, Mat. zametki, 63:4 (1998), 535–540 | Zbl

[3] Konoplev B. V., “Ob obobschennykh rangakh ustoichivykh matrits”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 2020, 197–199

[4] “High-Dimentional Approximation and Discretization”, Proc. Int. Conf. (Moscow, September 23–29, 2018), Moscow, 2018

[5] Valiant L. G., Some Conjenctures Related to Superlinear Lower Bounds, Univ. of Leeds, 1976

[6] Valiant L. G., “Graph-theoretic arguments in low-level complexity”, Lect. Notes Comput. Sci., 53, 1977, 162–176 | DOI | Zbl