Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_199_a5, author = {V. V. Kalmanovich and M. A. Stepovich}, title = {Application of generalized {Bers} degrees, the matrix method, and the {Fourier} method for solving the nonstationary heat equation in a multilayer medium}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {50--59}, publisher = {mathdoc}, volume = {199}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_199_a5/} }
TY - JOUR AU - V. V. Kalmanovich AU - M. A. Stepovich TI - Application of generalized Bers degrees, the matrix method, and the Fourier method for solving the nonstationary heat equation in a multilayer medium JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 50 EP - 59 VL - 199 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_199_a5/ LA - ru ID - INTO_2021_199_a5 ER -
%0 Journal Article %A V. V. Kalmanovich %A M. A. Stepovich %T Application of generalized Bers degrees, the matrix method, and the Fourier method for solving the nonstationary heat equation in a multilayer medium %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 50-59 %V 199 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_199_a5/ %G ru %F INTO_2021_199_a5
V. V. Kalmanovich; M. A. Stepovich. Application of generalized Bers degrees, the matrix method, and the Fourier method for solving the nonstationary heat equation in a multilayer medium. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 50-59. http://geodesic.mathdoc.fr/item/INTO_2021_199_a5/
[1] Afanasenkova Yu. V., Gladyshev Yu. A., Kalmanovich V. V., “Nekotorye metody resheniya zadach teploprovodnosti mnogosloinoi sredy pri nalichii istochnikov tepla”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obzory., 172 (2019), 3–8 | MR
[2] Vidin Yu. V., Zlobin V. S., “Analiticheskii raschet nestatsionarnogo temperaturnogo polya ploskogo tela pri peremennom koeffitsiente teploprovodnosti”, Teplofiz. vysokikh temperatur., 57:5 (2019), 790–792
[3] Gladyshev Yu. A., Metod obobschennykh stepenei Bersa i ego prilozhenie v matematicheskoi fizike, KGU im. K. E. Tsiolkovskogo, Kaluga, 2011
[4] Gladyshev Yu. A., Kalmanovich V. V., “Ob ispolzovanii matrichnogo metoda resheniya zadach teploprovodnosti v mnogosloinoi srede pri nalichii fazovykh perekhodov”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obzory., 172 (2019), 30–37
[5] Gladyshev Yu. A., Kalmanovich V. V., Seregina E. V., Stepovich M. A., “O vozmozhnosti sovmestnogo primeneniya matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessa teploperenosa v ob'ektakh, obladayuschikh tsilindricheskoi simmetriei”, Voprosy atomnoi nauki i tekhniki. Ser. Yaderno-reaktornye konstanty., 3 (2018), 158–167
[6]
[7] Gladyshev Yu. A., Kalmanovich V. V., Stepovich M. A., “O primenenii matrichnogo metoda dlya matematicheskogo modelirovaniya protsessov teploperenosa”, Mat. 20 Mezhdunar. Saratov. zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, 28 yanvarya — 1 fevralya 2020 g.), Nauchnaya kniga, Saratov, 2020, 118–121
[8] Golubkov A. A., “Kraevaya zadacha dlya uravneniya Shturma—Liuvillya s kusochno tselym potentsialom na krivoi i usloviyami razryva reshenii”, Sib. elektron. mat. izv., 16 (2019), 1005–1027 | MR | Zbl
[9] Golubkov A. A., “Obratnaya zadacha dlya operatorov Shturma—Liuvillya v kompleksnoi ploskosti”, Izv. Saratov. un-ta. Nov. ser. Mat. Mekh. Inform., 18:2 (2018), 144–156 | MR | Zbl
[10] Kalmanovich V. V., Stepovich M. A., “O sovmestnom primenenii matrichnogo metoda i apparata obobschennykh stepenei Bersa dlya matematicheskogo modelirovaniya protsessov teplomassoperenosa v poluprovodnikovykh materialakh elektronnoi tekhniki”, Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem, IPPM RAN, M., 2018, 194–201
[11] Karslou G., Eger D., Teploprovodnost tverdykh tel, Nauka, M., 1964
[12] Kudinov V. A., Kartashov E. M., Kalashnikov V. V., Analiticheskie resheniya zadach teplomassoperenosa i termouprugosti dlya mnogosloinykh konstruktsii, Vysshaya shkola, M., 2005
[13] Seregina E. V., Kalmanovich V. V., Stepovich M. A., “Sravnitelnyi analiz matrichnogo metoda i metoda konechnykh raznostei dlya modelirovaniya raspredeleniya neosnovnykh nositelei zaryada v mnogosloinoi planarnoi poluprovodnikovoi strukture”, Itogi nauki tekhn. Ser. Sovr. mat. prilozh. Temat. obzory., 172 (2019), 108–116 | MR
[14] Formalev V. F., Kolesnik S. A., Selin I. A., Kuznetsova E. L., “Optimalnyi vybor parametrov ekranno-vakuumnoi teploizolyatsii kosmicheskikh apparatov”, Teplofizika vysokikh temperatur., 55:1 (2017), 108-114
[15] Artemov M. A., Baranovskii E. S., Zhabko A. P., Provotorov V. V., “On a 3D model of nonisothermal flows in a pipeline network”, J. Phys. Conf. Ser., 1203 (2019), 012094 | DOI
[16] Bers L., Gelbart A., “On a class of functions defined by partial differential equations”, Trans. Am. Math. Soc., 56 (1944), 67–93 | DOI | MR | Zbl
[17] Kalmanovich V. V., Seregina E. V., Stepovich M. A., “On the possibility of a numerical solution of the heat and mass transfer problem with the combined matrix generalized powers of Bers method”, J. Phys. Conf. Ser., 1163 (2019), 012012 | DOI