Fourier transform and continuity of functions of bounded $\Phi$-variation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 43-49
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove several criteria for the continuity of functions of bounded $\Phi$-variation that belong to the spaces $L^q$ on $\mathbb{R}$. The first result connects the continuity of a function with the behaviour of its Fourier transform, the second result is based on the notion of the modulus of continuity in $\Psi(L)$, and the third result concerns the degree of approximation by partial Fourier integrals. Theorems 1 and 3 in the case $\Phi(u)=|u|^p$, $1\le p\infty$, were obtained earlier by the first author.
Keywords:
function of bounded $\Phi$-variation, continuity.
Mots-clés : Fourier transform
Mots-clés : Fourier transform
@article{INTO_2021_199_a4,
author = {B. I. Golubov and S. S. Volosivets},
title = {Fourier transform and continuity of functions of bounded $\Phi$-variation},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {43--49},
publisher = {mathdoc},
volume = {199},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_199_a4/}
}
TY - JOUR AU - B. I. Golubov AU - S. S. Volosivets TI - Fourier transform and continuity of functions of bounded $\Phi$-variation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 43 EP - 49 VL - 199 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_199_a4/ LA - ru ID - INTO_2021_199_a4 ER -
%0 Journal Article %A B. I. Golubov %A S. S. Volosivets %T Fourier transform and continuity of functions of bounded $\Phi$-variation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 43-49 %V 199 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_199_a4/ %G ru %F INTO_2021_199_a4
B. I. Golubov; S. S. Volosivets. Fourier transform and continuity of functions of bounded $\Phi$-variation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 43-49. http://geodesic.mathdoc.fr/item/INTO_2021_199_a4/