Fourier transform and continuity of functions of bounded $\Phi$-variation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 43-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove several criteria for the continuity of functions of bounded $\Phi$-variation that belong to the spaces $L^q$ on $\mathbb{R}$. The first result connects the continuity of a function with the behaviour of its Fourier transform, the second result is based on the notion of the modulus of continuity in $\Psi(L)$, and the third result concerns the degree of approximation by partial Fourier integrals. Theorems 1 and 3 in the case $\Phi(u)=|u|^p$, $1\le p\infty$, were obtained earlier by the first author.
Keywords: function of bounded $\Phi$-variation, continuity.
Mots-clés : Fourier transform
@article{INTO_2021_199_a4,
     author = {B. I. Golubov and S. S. Volosivets},
     title = {Fourier transform and continuity of functions of bounded $\Phi$-variation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {43--49},
     publisher = {mathdoc},
     volume = {199},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_199_a4/}
}
TY  - JOUR
AU  - B. I. Golubov
AU  - S. S. Volosivets
TI  - Fourier transform and continuity of functions of bounded $\Phi$-variation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 43
EP  - 49
VL  - 199
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_199_a4/
LA  - ru
ID  - INTO_2021_199_a4
ER  - 
%0 Journal Article
%A B. I. Golubov
%A S. S. Volosivets
%T Fourier transform and continuity of functions of bounded $\Phi$-variation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 43-49
%V 199
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_199_a4/
%G ru
%F INTO_2021_199_a4
B. I. Golubov; S. S. Volosivets. Fourier transform and continuity of functions of bounded $\Phi$-variation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 43-49. http://geodesic.mathdoc.fr/item/INTO_2021_199_a4/

[1] Golubov B. I., “O nepreryvnykh funktsiyakh ogranichennoi $p$-variatsii”, Mat. zametki., 1:3 (1967), 305–312 | MR | Zbl

[2] Golubov B. I., “Integral Fure i funktsii ogranichennoi $p$-variatsii”, Izv. vuzov. Mat., 1968, no. 11, 83–92 | Zbl

[3] Gukevich V. O., “Integral Fure funktsii ogranichennoi variatsii na vsei osi”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, GIFML, M., 1961, 60–64

[4] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, GIFML, M., 1958

[5] Lozinskii S. M., “Ob odnoi teoreme N. Wiener'a”, Dokl. AN SSSR., 49:8 (1945), 562–565

[6] Lozinskii S. M., “Ob odnoi teoreme N. Wiener'a, II”, Dokl. AN SSSR., 53:8 (1946), 691–694

[7] Nikolskii S. M., “Ryady Fure funktsii, imeyuschikh proizvodnuyu ogranichennoi variatsii”, Izv. AN SSSR. Ser. mat., 13:6 (1949), 513–532 | Zbl

[8] Titchmarsh E., Vvedenie v teoriyu integralov Fure, GITTL, M., 1948

[9] Cohen E., “On the Fourier coefficients and continuity of functions of class $\mathcal V^*_\Phi$”, Rocky Mountain J. Math., 9:2 (1979), 227–237 | DOI | MR | Zbl

[10] Musielak J., Orlicz W., “On generalized variations (I)”, Stud. Math., 18:1 (1959), 11–41 | DOI | Zbl

[11] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, J. Math Phys. (MTI)., 3 (1924), 72–94 | DOI | Zbl