Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_199_a0, author = {G. E. Abduragimov}, title = {On the existence of a positive solution to a boundary-value problem for a second-order nonlinear ordinary differential equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--6}, publisher = {mathdoc}, volume = {199}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_199_a0/} }
TY - JOUR AU - G. E. Abduragimov TI - On the existence of a positive solution to a boundary-value problem for a second-order nonlinear ordinary differential equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 3 EP - 6 VL - 199 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_199_a0/ LA - ru ID - INTO_2021_199_a0 ER -
%0 Journal Article %A G. E. Abduragimov %T On the existence of a positive solution to a boundary-value problem for a second-order nonlinear ordinary differential equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 3-6 %V 199 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_199_a0/ %G ru %F INTO_2021_199_a0
G. E. Abduragimov. On the existence of a positive solution to a boundary-value problem for a second-order nonlinear ordinary differential equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 3-6. http://geodesic.mathdoc.fr/item/INTO_2021_199_a0/