Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_199_a0, author = {G. E. Abduragimov}, title = {On the existence of a positive solution to a boundary-value problem for a second-order nonlinear ordinary differential equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--6}, publisher = {mathdoc}, volume = {199}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_199_a0/} }
TY - JOUR AU - G. E. Abduragimov TI - On the existence of a positive solution to a boundary-value problem for a second-order nonlinear ordinary differential equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 3 EP - 6 VL - 199 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_199_a0/ LA - ru ID - INTO_2021_199_a0 ER -
%0 Journal Article %A G. E. Abduragimov %T On the existence of a positive solution to a boundary-value problem for a second-order nonlinear ordinary differential equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 3-6 %V 199 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_199_a0/ %G ru %F INTO_2021_199_a0
G. E. Abduragimov. On the existence of a positive solution to a boundary-value problem for a second-order nonlinear ordinary differential equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 3-6. http://geodesic.mathdoc.fr/item/INTO_2021_199_a0/
[1] Abduragimov E. I., “Apriornye otsenki polozhitelnogo resheniya dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo differentsialnogo uravneniya vtorogo poryadka”, Dagestan. elektron. mat. izv., 11 (2019), 28–48
[2] Krein S. G., Funktsionalnyi analiz, Nauka, M., 1972
[3] Pokornyi Yu. V., “O nulyakh funktsii Grina zadachi Valle-Pussena”, Mat. sb., 199:6 (2008), 891–921 | Zbl
[4] Bailey P., Waltman P., “Existence and uniqueness of solutions of the first boundary-value problem for nonlinear second-order differential equations”, Rat. Mech. Anal., 21 (1966), 310–320 | DOI | Zbl
[5] Meiqiang F., Xuemei Z., Weigao G., “Existence theorems for a second-order nonlinear differential equation with nonlocal boundary conditions and their applications”, Appl. Math. Comput., 33 (2010), 137–153 | Zbl
[6] Weng S., Wang F., “Existence of weak solutions of a boundary-value problem for a second-order ordinary differential equation”, Boundary-Value Probl., 9 (2018)
[7] Tskhovrebadze G., “On the modified boundary-value problem of de la Vallée Poussin for nonlinear ordinary differential equations”, Georgian Math. J., 1 (1994), 429–458 | DOI | Zbl
[8] Agarwal R. P., Krishamoorthy P. R., “Existence and uniqueness of solutions of boundary-value problems for third-order nonlinear differential equations”, Proc. Indian Acad. Sci. Math. Sci., 88 (1979), 105–113 | DOI | Zbl
[9] Sun J., Liu X., “Computation of topological degree for nonlinear operators and applications”, Nonlin. Anal. Theory Meth. Appl., 69:11 (2008), 4121–4130 | DOI | MR | Zbl
[10] Li H., Liu Y., “On sign-changing solutions for a second-order integral boundary-value problem”, Appl. Math. Comput., 62 (2011), 651-656 | DOI | Zbl