On the existence of a positive solution to a boundary-value problem for a second-order nonlinear ordinary differential equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 3-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a boundary-value problem for a nonlinear, second-order, ordinary differential equation. Applying special topological methods, we obtain sufficient conditions for the existence of a positive solution of the problem. An example is presented.
Mots-clés : positive solution
Keywords: boundary-value problem, cone, Green’s function.
@article{INTO_2021_199_a0,
     author = {G. E. Abduragimov},
     title = {On the existence of a positive solution to a boundary-value problem for a second-order nonlinear ordinary differential equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--6},
     publisher = {mathdoc},
     volume = {199},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_199_a0/}
}
TY  - JOUR
AU  - G. E. Abduragimov
TI  - On the existence of a positive solution to a boundary-value problem for a second-order nonlinear ordinary differential equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 3
EP  - 6
VL  - 199
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_199_a0/
LA  - ru
ID  - INTO_2021_199_a0
ER  - 
%0 Journal Article
%A G. E. Abduragimov
%T On the existence of a positive solution to a boundary-value problem for a second-order nonlinear ordinary differential equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 3-6
%V 199
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_199_a0/
%G ru
%F INTO_2021_199_a0
G. E. Abduragimov. On the existence of a positive solution to a boundary-value problem for a second-order nonlinear ordinary differential equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the 20 International Saratov Winter School "Contemporary Problems of Function Theory and Their Applications", Saratov, January 28 — February 1, 2020. Part 1, Tome 199 (2021), pp. 3-6. http://geodesic.mathdoc.fr/item/INTO_2021_199_a0/

[1] Abduragimov E. I., “Apriornye otsenki polozhitelnogo resheniya dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo differentsialnogo uravneniya vtorogo poryadka”, Dagestan. elektron. mat. izv., 11 (2019), 28–48

[2] Krein S. G., Funktsionalnyi analiz, Nauka, M., 1972

[3] Pokornyi Yu. V., “O nulyakh funktsii Grina zadachi Valle-Pussena”, Mat. sb., 199:6 (2008), 891–921 | Zbl

[4] Bailey P., Waltman P., “Existence and uniqueness of solutions of the first boundary-value problem for nonlinear second-order differential equations”, Rat. Mech. Anal., 21 (1966), 310–320 | DOI | Zbl

[5] Meiqiang F., Xuemei Z., Weigao G., “Existence theorems for a second-order nonlinear differential equation with nonlocal boundary conditions and their applications”, Appl. Math. Comput., 33 (2010), 137–153 | Zbl

[6] Weng S., Wang F., “Existence of weak solutions of a boundary-value problem for a second-order ordinary differential equation”, Boundary-Value Probl., 9 (2018)

[7] Tskhovrebadze G., “On the modified boundary-value problem of de la Vallée Poussin for nonlinear ordinary differential equations”, Georgian Math. J., 1 (1994), 429–458 | DOI | Zbl

[8] Agarwal R. P., Krishamoorthy P. R., “Existence and uniqueness of solutions of boundary-value problems for third-order nonlinear differential equations”, Proc. Indian Acad. Sci. Math. Sci., 88 (1979), 105–113 | DOI | Zbl

[9] Sun J., Liu X., “Computation of topological degree for nonlinear operators and applications”, Nonlin. Anal. Theory Meth. Appl., 69:11 (2008), 4121–4130 | DOI | MR | Zbl

[10] Li H., Liu Y., “On sign-changing solutions for a second-order integral boundary-value problem”, Appl. Math. Comput., 62 (2011), 651-656 | DOI | Zbl