An analog of Bernstein's inequality for fractional $B$-derivatives of Schlemilch $j$-polynomials in weighted function classes
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 80-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $B$-derivative defined by generalized displacements coincides with the singular Bessel differential operator up to a constant. Similarly to the Riemann–Liouville, Marchot, and Weil fractional derivatives, we introduce fractional powers of the $B$-derivative and prove that these derivatives coincide on the corresponding functional classes. Also, we prove Bernstein's inequalities for the $B$-derivative and fractional $B$-derivative of even Schlemilch $j$-polynomials in the classes of continuous and Lebesgue-measurable functions.
Keywords: $j$-Bessel functions; generalized Poisson distribution; fractional derivatives of Liouville, Weil; Riesz interpolation formula; Schlemilch polynomial; Stepanov space generated by a generalized shift; Bernstein–Zygmund inequality.
Mots-clés : Marchot
@article{INTO_2021_198_a8,
     author = {L. N. Lyakhov and E. Sanina},
     title = {An analog of {Bernstein's} inequality for fractional $B$-derivatives of {Schlemilch} $j$-polynomials in weighted function classes},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {80--88},
     publisher = {mathdoc},
     volume = {198},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a8/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - E. Sanina
TI  - An analog of Bernstein's inequality for fractional $B$-derivatives of Schlemilch $j$-polynomials in weighted function classes
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 80
EP  - 88
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a8/
LA  - ru
ID  - INTO_2021_198_a8
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A E. Sanina
%T An analog of Bernstein's inequality for fractional $B$-derivatives of Schlemilch $j$-polynomials in weighted function classes
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 80-88
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a8/
%G ru
%F INTO_2021_198_a8
L. N. Lyakhov; E. Sanina. An analog of Bernstein's inequality for fractional $B$-derivatives of Schlemilch $j$-polynomials in weighted function classes. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 80-88. http://geodesic.mathdoc.fr/item/INTO_2021_198_a8/

[1] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961

[2] Gradshtein I. S, Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963

[3] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1966

[4] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997

[5] Kipriyanov I. A., “Preobrazovanie Fure—Besselya i drobnye stepeni differentsialnykh operatorov Besselya”, Dokl. RAN., 373:1 (2000), 17–20 | MR | Zbl

[6] Levitan B. M., “Razlozhenie po funktsiyam Besselya v ryady i integraly Fure”, Usp. mat. nauk., 6:2 (42) (1951), 102–143 | MR | Zbl

[7] Lyakhov L. N., “Ob odnom klasse gipersingulyarnykh integralov”, Dokl. AN SSSR., 315:2 (1990), 291–296 | Zbl

[8] Lyakhov L. N., Sanina E. L., “Mnogochleny Shlemilkha, interpolyatsionnaya formula Rissa dlya $V$-proizvodnoi i neravenstvo Bernshteina dlya $V$-proizvodnoi Veilya—Marsho”, Dokl. RAN., 417:5 (2007), 592–596 | Zbl

[9] Lyakhov L. N., “O ryadakh Shlemilkha”, Nauch. ved. Belgorod. gos. un-ta. Mat. Fiz., 2013, no. 11 (154), 62–73

[10] Lyakhov L. N., “Postroenie yader Dirikhle i Valle-Pussena—Nikolskogo dlya $j$-besselevykh integralov Fure”, Tr. Mosk. mat. o-va., 76:1 (2015), 67–84 | DOI | Zbl

[11] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977

[12] Samko S. G., Kilbas A. A., Marichev I. O., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[13] Lyakhov L. N., Lapshina M. G. , “Inversion formulas for integral operations of weighted plane wave type”, J. Math. Sci., 216:2 (2016), 270-278 | DOI | MR | Zbl