Algorithm for covering a prefractal graph
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 76-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a mathematical model of the routing problem and its multicriteria formulation on prefractal oriented graphs. We propose an algorithm of constructing a cover of a prefractal graph by chains and estimate the criteria obtained.
Keywords: prefractal graph, graph cover, transport network, algorithm.
@article{INTO_2021_198_a7,
     author = {A. M. Kochkarov and L. M. Elkanova},
     title = {Algorithm for covering a prefractal graph},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {76--79},
     publisher = {mathdoc},
     volume = {198},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a7/}
}
TY  - JOUR
AU  - A. M. Kochkarov
AU  - L. M. Elkanova
TI  - Algorithm for covering a prefractal graph
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 76
EP  - 79
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a7/
LA  - ru
ID  - INTO_2021_198_a7
ER  - 
%0 Journal Article
%A A. M. Kochkarov
%A L. M. Elkanova
%T Algorithm for covering a prefractal graph
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 76-79
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a7/
%G ru
%F INTO_2021_198_a7
A. M. Kochkarov; L. M. Elkanova. Algorithm for covering a prefractal graph. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 76-79. http://geodesic.mathdoc.fr/item/INTO_2021_198_a7/

[1] Emelichev V. A., Melnikov O. I., Sarvanov V. I., Tyshkevich R. I., Lektsii po teorii grafov, Nauka, M., 1990

[2] Kochkarov A. M., Raspoznavanie fraktalnykh grafov. Algoritmicheskii podkhod, Kompyuter. inf.-izd. tsentr V. Lebedeva, Nizhnii Arkhyz, 1998

[3] Kochkarov R. A., Mnogovzveshennye predfraktalnye grafy s nedeterminirovannymi vesami. Prilozheniya v ekonomike, astrofizike i setevykh kommunikatsiyakh, Lenand, M., 2017

[4] Kochkarov R. A. Pavlov D. A., Khubieva D. A.-Z., “Fraktalnye i predfraktalnye grafy, osnovnye opredeleniya i oboznacheniya”, Nauch. zh. KubGAU., 2017, no. 134 (10), 174–188

[5] Kristofides N., Teoriya grafov. Algoritmicheskii podkhod, Mir, M., 1978

[6] Nogin V. D., Prinyatie reshenii v mnogokriterialnoi srede: kolichestvennyi podkhod, Fizmatlit, M., 2004

[7] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M, 1982

[8] Elkanova L. M., Kochkarov A. M., “Metricheskie kharakteristiki predfraktalnogo grafa s polnymi razlichnymi zatravkami”, Mat. III Mezhdunar. nauch. konf. «Nelokalnye kraevye zadachi i rodstvennye problemy matematicheskoi biologii, informatiki i fiziki» (Nalchik, Kabardino-Balkarskaya respublika, 5-8 dekabrya 2006 g.), Elbrus, Nalchik, 2006, 334–335

[9] Yushmanov S. V., “O minimalnoi slozhnosti pokrytiya grafov”, Prikladnaya matematika i matematicheskoe obespechenie EVM, MGU, M., 1981, 70–72