Well-posedness and ill-posedness of boundary-value problems for one class of fourth-order differential equations of Sobolev type
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 68-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the well-posedness of boundary-value problems for Sobolev-type differential equations \begin{equation*} \frac{\partial^2}{\partial t^2}(Au)+Bu+h(x,y,t)Cu=f(x,y,t), \end{equation*} in which $x$ is a point from the bounded domain $\Omega$ of the space $\mathbb{R}^n_x$, $y$ is a point from the bounded domain $G$ of the space $\mathbb{R}^m_y$, $t$ is a point of the interval $(0,T)$, $A$ and $B$ are second-order elliptic operators acting on variables $x_1,\ldots,x_n$, $C$ is a second-order elliptic operator acting on $y_1,\ldots,y_m$, and $h(x,y,t)$ and $f(x,y,t)$ are given functions. For these equations, we study the well-posedness in the S. L. Sobolev spaces of the initial-boundary-value and Dirichlet problems.
Mots-clés : Sobolev-type equations, pseudoelliptic equations
Keywords: pseudohyperbolic equations, initial-boundary value problem, Dirichlet problem, correctness.
@article{INTO_2021_198_a6,
     author = {A. I. Kozhanov},
     title = {Well-posedness and ill-posedness of boundary-value problems for one class of fourth-order differential equations of {Sobolev} type},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {68--75},
     publisher = {mathdoc},
     volume = {198},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a6/}
}
TY  - JOUR
AU  - A. I. Kozhanov
TI  - Well-posedness and ill-posedness of boundary-value problems for one class of fourth-order differential equations of Sobolev type
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 68
EP  - 75
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a6/
LA  - ru
ID  - INTO_2021_198_a6
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%T Well-posedness and ill-posedness of boundary-value problems for one class of fourth-order differential equations of Sobolev type
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 68-75
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a6/
%G ru
%F INTO_2021_198_a6
A. I. Kozhanov. Well-posedness and ill-posedness of boundary-value problems for one class of fourth-order differential equations of Sobolev type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 68-75. http://geodesic.mathdoc.fr/item/INTO_2021_198_a6/

[1] Demidenko G. V., Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998

[2] Zhegalov V. I., Mironov A. N., Utkina E. A., Uravneniya s dominiruyuschei chastnoi proizvodnoi, Kazanskii federalnyi universitet, Kazan, 2014

[3] Kozhanov A. I., “O kraevykh zadachakh dlya nekotorykh klassov uravnenii vysokogo poryadka, nerazreshennykh otnositelno starshei proizvodnoi”, Sib. mat. zh., 35:2 (1994), 359–376 | MR | Zbl

[4] Korpusov M. O., Razrushenie v neklassicheskikh nelokalnykh uravneniyakh, Librokom, M., 2011

[5] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973

[6] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[7] Sveshnikov A. G. Bogolyubov A. N., Kravtsov V. V., Lektsii po matematicheskoi fizike, MGU, M., 2004

[8] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988

[9] Utkina E. A., “Zadacha Dirikhle dlya odnogo uravneniya chetvertogo poryadka”, Differ. uravn., 47:4 (2011), 400–404

[10] Utkina E. A., “Edinstvennost resheniya zadachi Dirikhle dlya odnogo $n$-mernogo psevdoparabolicheskogo uravneniya”, Differ. uravn., 48:10 (2012), 1443–1449 | Zbl

[11] Yakubov S. Ya., Lineinye differentsialno-operatornye uravneniya i ikh prilozheniya, Elm, Baku, 1985

[12] Evans L. C., Partial Differential Equations, Am. Math. Soc., Providence, Rhode Island, 2003