Well-posedness and ill-posedness of boundary-value problems for one class of fourth-order differential equations of Sobolev type
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 68-75
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to the study of the well-posedness of boundary-value problems for Sobolev-type differential equations
\begin{equation*}
\frac{\partial^2}{\partial t^2}(Au)+Bu+h(x,y,t)Cu=f(x,y,t),
\end{equation*}
in which $x$ is a point from the bounded domain $\Omega$ of the space $\mathbb{R}^n_x$, $y$ is a point from the bounded domain $G$ of the space $\mathbb{R}^m_y$, $t$ is a point of the interval $(0,T)$, $A$ and $B$ are second-order elliptic operators acting on variables $x_1,\ldots,x_n$, $C$ is a second-order elliptic operator acting on $y_1,\ldots,y_m$, and $h(x,y,t)$ and $f(x,y,t)$ are given functions. For these equations, we study the well-posedness in the S. L. Sobolev spaces of the initial-boundary-value and Dirichlet problems.
Mots-clés :
Sobolev-type equations, pseudoelliptic equations
Keywords: pseudohyperbolic equations, initial-boundary value problem, Dirichlet problem, correctness.
Keywords: pseudohyperbolic equations, initial-boundary value problem, Dirichlet problem, correctness.
@article{INTO_2021_198_a6,
author = {A. I. Kozhanov},
title = {Well-posedness and ill-posedness of boundary-value problems for one class of fourth-order differential equations of {Sobolev} type},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {68--75},
publisher = {mathdoc},
volume = {198},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a6/}
}
TY - JOUR AU - A. I. Kozhanov TI - Well-posedness and ill-posedness of boundary-value problems for one class of fourth-order differential equations of Sobolev type JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 68 EP - 75 VL - 198 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_198_a6/ LA - ru ID - INTO_2021_198_a6 ER -
%0 Journal Article %A A. I. Kozhanov %T Well-posedness and ill-posedness of boundary-value problems for one class of fourth-order differential equations of Sobolev type %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 68-75 %V 198 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_198_a6/ %G ru %F INTO_2021_198_a6
A. I. Kozhanov. Well-posedness and ill-posedness of boundary-value problems for one class of fourth-order differential equations of Sobolev type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 68-75. http://geodesic.mathdoc.fr/item/INTO_2021_198_a6/