Problem with Steklov conditions for a hyperbolic equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 50-60
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider a hyperbolic equation with one spatial variable under additional nonlocal conditions and prove the existence of a unique generalized solution. The proof is based on a priori estimates obtained, the Galerkin method, and properties of Sobolev spaces.
Keywords:
hyperbolic equation, nonlocal problem, generalized solution, initial-boundary-value problem.
@article{INTO_2021_198_a4,
author = {A. V. Dyuzheva},
title = {Problem with {Steklov} conditions for a hyperbolic equation},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {50--60},
publisher = {mathdoc},
volume = {198},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a4/}
}
TY - JOUR AU - A. V. Dyuzheva TI - Problem with Steklov conditions for a hyperbolic equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 50 EP - 60 VL - 198 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_198_a4/ LA - ru ID - INTO_2021_198_a4 ER -
A. V. Dyuzheva. Problem with Steklov conditions for a hyperbolic equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 50-60. http://geodesic.mathdoc.fr/item/INTO_2021_198_a4/