Boundary-value problem with shift for a third-order parabolic-hyperbolic equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 33-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a boundary-value problem with shift for a third-order inhomogeneous parabolic-hyperbolic equation with the wave operator in the hyperbolicity domain. The boundary condition of the problem is the linear combination of the values of the unknown function on two independent characteristic lines and on the line of change of type. We obtain necessary and sufficient conditions for the existence and uniqueness of a regular solution of the problem. In some particular cases, explicit solutions are obtained.
Keywords: degenerating equation, hyperbolic equation, parabolic-hyperbolic equation, problem with shift, Tricomi method, method of integral equations.
@article{INTO_2021_198_a2,
     author = {Zh. A. Balkizov},
     title = {Boundary-value problem with shift for a third-order parabolic-hyperbolic equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {33--40},
     publisher = {mathdoc},
     volume = {198},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a2/}
}
TY  - JOUR
AU  - Zh. A. Balkizov
TI  - Boundary-value problem with shift for a third-order parabolic-hyperbolic equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 33
EP  - 40
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a2/
LA  - ru
ID  - INTO_2021_198_a2
ER  - 
%0 Journal Article
%A Zh. A. Balkizov
%T Boundary-value problem with shift for a third-order parabolic-hyperbolic equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 33-40
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a2/
%G ru
%F INTO_2021_198_a2
Zh. A. Balkizov. Boundary-value problem with shift for a third-order parabolic-hyperbolic equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 33-40. http://geodesic.mathdoc.fr/item/INTO_2021_198_a2/

[1] Balkizov Zh. A., “Kraevaya zadacha so smescheniem dlya modelnogo uravneniya parabolo-giperbolicheskogo tipa tretego poryadka”, Vestn. KRAUNTs. Fiz.-mat. nauki., 2018, no. 3 (23), 19–26 | MR | Zbl

[2] Balkizov Zh. A., “Ob odnoi kraevoi zadache tipa zadachi Trikomi dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa vtorogo poryadka s tremya smescheniyami v giperbolicheskoi chasti oblasti”, Nauch. ved. Belgorod. gos. un-ta. Mat. Fiz., 51:1 (2019), 5–14

[3] Bers L., Matematicheskie voprosy dozvukovoi i okolozvukovoi gazovoi dinamiki, IL, M., 1961

[4] Dzhuraev T. D., Kraevye zadachi dlya uravnenii smeshannogo i smeshanno sostavnogo tipov, FAN, Tashkent, 1979

[5] Eleev V. A., Kumykova S. K., “Vnutrennekraevaya zadacha dlya uravneniya smeshannogo tipa tretego poryadka s kratnymi kharakteristikami”, Izv. Kabardino-Balkar. nauch. tsentra RAN., 2010, no. 5-2 (37), 5–14

[6] Zhegalov V. I., “Kraevaya zadacha dlya uravneniya smeshannogo tipa s granichnymi usloviyami na obeikh kharakteristikakh i s razryvami na perekhodnoi linii”, Uchen. zap. Kazan. un-ta., 122:3 (1962), 3–16

[7] Zhegalov V. I., Issledovanie kraevykh zadach so smescheniem dlya uravnenii smeshannogo tipa, Diss. na soisk. uch. step. doktora fiz.-mat. nauk, Novosibirsk, 1988

[8] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Kazan. mat. o-vo, Kazan, 2001

[9] Kalmenov T. Sh., Kraevye zadachi dlya lineinykh uravnenii v chastnykh proizvodnykh giperbolicheskogo tipa, Gylaya, Shymkent, 1993

[10] Kilbas A. A., Repin O. A., “Zadacha so smescheniem dlya parabolo-giperbolicheskogo uravneniya”, Differ. uravn., 34:6 (1998), 799–805 | Zbl

[11] Kozhanov A. I., K teorii uravnenii sostavnogo tipa, Diss. na soisk. uch. step. doktora fiz.-mat. nauk, Novosibirsk, 1993

[12] Mirsaburov M., Chorieva S. T., “O zadache s tremya variantami smeschenii dlya uravneniya smeshannogo tipa”, Izv. vuzov. Mat., 2016, no. 4, 32–45 | Zbl

[13] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006

[14] Nakhushev A. M., K teorii lineinykh kraevykh zadach dlya giperbolicheskikh i smeshannykh uravnenii vtorogo poryadka, Diss. na soisk. uch. step. doktora fiz.-mat. nauk, Novosibirsk, 1970

[15] Nakhushev A. M., “Novaya kraevaya zadacha dlya odnogo vyrozhdayuschegosya giperbolicheskogo uravneniya”, Dokl. AN SSSR., 187:4 (1969), 736–739

[16] Nakhushev A. M., “O nekotorykh kraevykh zadachakh dlya giperbolicheskikh uravnenii i uravnenii smeshannogo tipa”, Differ. uravn., 5:1 (1969), 44–59

[17] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995

[18] Nakhusheva Z. A., Nelokalnye kraevye zadachi dlya osnovnykh i smeshannogo tipov differentsialnykh uravnenii, KBNTs RAN, Nalchik, 2011

[19] Repin O. A., “Nelokalnaya kraevaya zadacha dlya parabolo-giperbolicheskogo uravneniya s kharakteristicheskoi liniei izmeneniya tipa”, Differ. uravn., 28:1 (1992), 173–176

[20] Repin O. A., Kraevye zadachi so smescheniem dlya uravnenii giperbolicheskogo i smeshannogo tipov, Samara, 1992

[21] Repin O. A., Efimova S. V., “Nelokalnaya kraevaya zadacha dlya parabolo-giperbolicheskogo uravneniya s nekharakteristicheskoi liniei izmeneniya tipa”, Vestn. Samar. tekhn. un-ta. Ser. Fiz.-mat. nauki., 16 (2002), 10–14

[22] Repin O. A., Kumykova S. K., “Vnutrennekraevaya zadacha s operatorami Rimana—Liuvillya dlya uravneniya smeshannogo tipa tretego poryadka”, Vestn. Samar. tekhn. un-ta. Ser. Fiz.-mat. nauki., 20:1 (2016), 43–53

[23] Sabitov K. B., K teorii uravnenii smeshannogo tipa, Fizmatlit, M., 2014

[24] Salakhitdinov M. S., Uravneniya smeshanno-sostavnogo tipa, FAN, Tashkent, 1974

[25] Salakhitdinov M. S., Urinov A. K., K spektralnoi teorii uravnenii smeshannogo tipa, FAN, Tashkent, 2010

[26] Salakhitdinov M. S., Urinov A. K., Kraevye zadachi dlya uravnenii smeshannogo tipa so spektralnym parametrom, FAN, Tashkent, 1997

[27] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 2004

[28] Frankl F. I., Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973