Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 133-137

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove an analog of the Lyapunov inequality for the Dirichlet problem for an ordinary differential equation with the continuously distributed integration operator.
Keywords: Lyapunov inequality, Dirichlet problem, operator of continuously distributed integration, Riemann–Liouville fractional integral, Riemann–Liouville fractional derivative.
@article{INTO_2021_198_a14,
     author = {B. I. Efendiev},
     title = {Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {133--137},
     publisher = {mathdoc},
     volume = {198},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/}
}
TY  - JOUR
AU  - B. I. Efendiev
TI  - Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 133
EP  - 137
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/
LA  - ru
ID  - INTO_2021_198_a14
ER  - 
%0 Journal Article
%A B. I. Efendiev
%T Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 133-137
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/
%G ru
%F INTO_2021_198_a14
B. I. Efendiev. Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 133-137. http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/