Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 133-137
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove an analog of the Lyapunov inequality for the Dirichlet problem for an ordinary differential equation with the continuously distributed integration operator.
Keywords:
Lyapunov inequality, Dirichlet problem, operator of continuously distributed integration, Riemann–Liouville fractional integral, Riemann–Liouville fractional derivative.
@article{INTO_2021_198_a14,
author = {B. I. Efendiev},
title = {Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {133--137},
publisher = {mathdoc},
volume = {198},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/}
}
TY - JOUR AU - B. I. Efendiev TI - Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 133 EP - 137 VL - 198 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/ LA - ru ID - INTO_2021_198_a14 ER -
%0 Journal Article %A B. I. Efendiev %T Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 133-137 %V 198 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/ %G ru %F INTO_2021_198_a14
B. I. Efendiev. Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 133-137. http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/