Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 133-137
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we prove an analog of the Lyapunov inequality for the Dirichlet problem for an ordinary differential equation with the continuously distributed integration operator.
Keywords: Lyapunov inequality, Dirichlet problem, operator of continuously distributed integration, Riemann–Liouville fractional integral, Riemann–Liouville fractional derivative.
@article{INTO_2021_198_a14,
     author = {B. I. Efendiev},
     title = {Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {133--137},
     year = {2021},
     volume = {198},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/}
}
TY  - JOUR
AU  - B. I. Efendiev
TI  - Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 133
EP  - 137
VL  - 198
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/
LA  - ru
ID  - INTO_2021_198_a14
ER  - 
%0 Journal Article
%A B. I. Efendiev
%T Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 133-137
%V 198
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/
%G ru
%F INTO_2021_198_a14
B. I. Efendiev. Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 133-137. http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/

[1] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 1976

[2] Lyapunov' A. M., “Ob' odnom' voprose, kasayuschemsya lineinykh' differentsialnykh' uravnenii vtorogo poryadka s' periodicheskimi koeffitsientami”, Soobsch. Kharkov. mat. o-va. Vtoraya ser., 5 (1897), 190–254 | Zbl

[3] Nakhushev A. M., “O nepreryvnykh differentsialnykh uravneniyakh i ikh raznostnykh analogakh”, Dokl. AN SSSR., 300:4 (1988), 796–799 | MR | Zbl

[4] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995

[5] Nakhushev A. M., “O polozhitelnosti operatorov nepreryvnogo i diskretnogo differentsirovaniya i integrirovaniya vesma vazhnykh v drobnom ischislenii i v teorii uravnenii smeshannogo tipa”, Differ. uravn., 34:1 (1998), 101–109 | MR | Zbl

[6] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[7] Pskhu A. V., “K teorii operatora integro-differentsirovaniya kontinualnogo poryadka”, Differ. uravn., 40:1 (2004), 120–127 | MR | Zbl

[8] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[9] Pskhu A. V., “Fundamentalnoe reshenie obyknovennogo differentsialnogo uravneniya kontinualnogo poryadka”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 9:1 (2007), 73–78

[10] Streletskaya E. M., Fedorov V. E., Debush A., “Zadacha Koshi dlya uravneniya raspredelennogo poryadka v banakhovom prostranstve”, Mat. zametki SVFU., 25:1 (2018), 63–72 | Zbl

[11] Eneeva L. M., “Neravenstvo Lyapunova dlya uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Vestn. KRAUNTs. Fiz.-mat. nauki., 28:3 (2019), 32–39 | MR | Zbl

[12] Efendiev B. I., “Zadacha Dirikhle dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s operatorom raspredelennogo differentsirovaniya”, Vestn. KRAUNTs. Fiz.-mat. nauki., 29:4 (2019), 28–37 | MR

[13] Efendiev B. I., “Zadacha Neimana dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s operatorom raspredelennogo differentsirovaniya”, Izv. Kabardino-Balkar. nauch. tsentra RAN., 2019, no. 5 (91), 30–37

[14] Brown R. C., Hinton D. B., “Lyapunov inequalities and their applications”, Survey on Classical Inequalities, Springer, Dordrecht, 2000, 1–25

[15] Ferreira R. A. C., “A Lyapunov-type inequality for boundary-value problems”, Fract. Calc. Appl. Anal., 16:4 (2013), 978–984 | DOI | MR | Zbl

[16] Ferreira R. A. C., “On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function”, J. Math. Anal. Appl., 412:2 (2014), 1058–1063 | DOI | MR | Zbl

[17] Kochubei A. N., “Distributed order calculus and equations of ultraslow diffusion”, J. Math. Anal. Appl., 340 (2008), 252–281 | DOI | MR | Zbl