Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_198_a14, author = {B. I. Efendiev}, title = {Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {133--137}, publisher = {mathdoc}, volume = {198}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/} }
TY - JOUR AU - B. I. Efendiev TI - Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 133 EP - 137 VL - 198 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/ LA - ru ID - INTO_2021_198_a14 ER -
%0 Journal Article %A B. I. Efendiev %T Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 133-137 %V 198 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/ %G ru %F INTO_2021_198_a14
B. I. Efendiev. Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 133-137. http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/
[1] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 1976
[2] Lyapunov' A. M., “Ob' odnom' voprose, kasayuschemsya lineinykh' differentsialnykh' uravnenii vtorogo poryadka s' periodicheskimi koeffitsientami”, Soobsch. Kharkov. mat. o-va. Vtoraya ser., 5 (1897), 190–254 | Zbl
[3] Nakhushev A. M., “O nepreryvnykh differentsialnykh uravneniyakh i ikh raznostnykh analogakh”, Dokl. AN SSSR., 300:4 (1988), 796–799 | MR | Zbl
[4] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995
[5] Nakhushev A. M., “O polozhitelnosti operatorov nepreryvnogo i diskretnogo differentsirovaniya i integrirovaniya vesma vazhnykh v drobnom ischislenii i v teorii uravnenii smeshannogo tipa”, Differ. uravn., 34:1 (1998), 101–109 | MR | Zbl
[6] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003
[7] Pskhu A. V., “K teorii operatora integro-differentsirovaniya kontinualnogo poryadka”, Differ. uravn., 40:1 (2004), 120–127 | MR | Zbl
[8] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005
[9] Pskhu A. V., “Fundamentalnoe reshenie obyknovennogo differentsialnogo uravneniya kontinualnogo poryadka”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 9:1 (2007), 73–78
[10] Streletskaya E. M., Fedorov V. E., Debush A., “Zadacha Koshi dlya uravneniya raspredelennogo poryadka v banakhovom prostranstve”, Mat. zametki SVFU., 25:1 (2018), 63–72 | Zbl
[11] Eneeva L. M., “Neravenstvo Lyapunova dlya uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Vestn. KRAUNTs. Fiz.-mat. nauki., 28:3 (2019), 32–39 | MR | Zbl
[12] Efendiev B. I., “Zadacha Dirikhle dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s operatorom raspredelennogo differentsirovaniya”, Vestn. KRAUNTs. Fiz.-mat. nauki., 29:4 (2019), 28–37 | MR
[13] Efendiev B. I., “Zadacha Neimana dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s operatorom raspredelennogo differentsirovaniya”, Izv. Kabardino-Balkar. nauch. tsentra RAN., 2019, no. 5 (91), 30–37
[14] Brown R. C., Hinton D. B., “Lyapunov inequalities and their applications”, Survey on Classical Inequalities, Springer, Dordrecht, 2000, 1–25
[15] Ferreira R. A. C., “A Lyapunov-type inequality for boundary-value problems”, Fract. Calc. Appl. Anal., 16:4 (2013), 978–984 | DOI | MR | Zbl
[16] Ferreira R. A. C., “On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function”, J. Math. Anal. Appl., 412:2 (2014), 1058–1063 | DOI | MR | Zbl
[17] Kochubei A. N., “Distributed order calculus and equations of ultraslow diffusion”, J. Math. Anal. Appl., 340 (2008), 252–281 | DOI | MR | Zbl