Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 133-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove an analog of the Lyapunov inequality for the Dirichlet problem for an ordinary differential equation with the continuously distributed integration operator.
Keywords: Lyapunov inequality, Dirichlet problem, operator of continuously distributed integration, Riemann–Liouville fractional integral, Riemann–Liouville fractional derivative.
@article{INTO_2021_198_a14,
     author = {B. I. Efendiev},
     title = {Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {133--137},
     publisher = {mathdoc},
     volume = {198},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/}
}
TY  - JOUR
AU  - B. I. Efendiev
TI  - Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 133
EP  - 137
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/
LA  - ru
ID  - INTO_2021_198_a14
ER  - 
%0 Journal Article
%A B. I. Efendiev
%T Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 133-137
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/
%G ru
%F INTO_2021_198_a14
B. I. Efendiev. Lyapunov inequality for an ordinary second-order differential equation with a distributed integration operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 133-137. http://geodesic.mathdoc.fr/item/INTO_2021_198_a14/

[1] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 1976

[2] Lyapunov' A. M., “Ob' odnom' voprose, kasayuschemsya lineinykh' differentsialnykh' uravnenii vtorogo poryadka s' periodicheskimi koeffitsientami”, Soobsch. Kharkov. mat. o-va. Vtoraya ser., 5 (1897), 190–254 | Zbl

[3] Nakhushev A. M., “O nepreryvnykh differentsialnykh uravneniyakh i ikh raznostnykh analogakh”, Dokl. AN SSSR., 300:4 (1988), 796–799 | MR | Zbl

[4] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995

[5] Nakhushev A. M., “O polozhitelnosti operatorov nepreryvnogo i diskretnogo differentsirovaniya i integrirovaniya vesma vazhnykh v drobnom ischislenii i v teorii uravnenii smeshannogo tipa”, Differ. uravn., 34:1 (1998), 101–109 | MR | Zbl

[6] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[7] Pskhu A. V., “K teorii operatora integro-differentsirovaniya kontinualnogo poryadka”, Differ. uravn., 40:1 (2004), 120–127 | MR | Zbl

[8] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[9] Pskhu A. V., “Fundamentalnoe reshenie obyknovennogo differentsialnogo uravneniya kontinualnogo poryadka”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 9:1 (2007), 73–78

[10] Streletskaya E. M., Fedorov V. E., Debush A., “Zadacha Koshi dlya uravneniya raspredelennogo poryadka v banakhovom prostranstve”, Mat. zametki SVFU., 25:1 (2018), 63–72 | Zbl

[11] Eneeva L. M., “Neravenstvo Lyapunova dlya uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Vestn. KRAUNTs. Fiz.-mat. nauki., 28:3 (2019), 32–39 | MR | Zbl

[12] Efendiev B. I., “Zadacha Dirikhle dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s operatorom raspredelennogo differentsirovaniya”, Vestn. KRAUNTs. Fiz.-mat. nauki., 29:4 (2019), 28–37 | MR

[13] Efendiev B. I., “Zadacha Neimana dlya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s operatorom raspredelennogo differentsirovaniya”, Izv. Kabardino-Balkar. nauch. tsentra RAN., 2019, no. 5 (91), 30–37

[14] Brown R. C., Hinton D. B., “Lyapunov inequalities and their applications”, Survey on Classical Inequalities, Springer, Dordrecht, 2000, 1–25

[15] Ferreira R. A. C., “A Lyapunov-type inequality for boundary-value problems”, Fract. Calc. Appl. Anal., 16:4 (2013), 978–984 | DOI | MR | Zbl

[16] Ferreira R. A. C., “On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function”, J. Math. Anal. Appl., 412:2 (2014), 1058–1063 | DOI | MR | Zbl

[17] Kochubei A. N., “Distributed order calculus and equations of ultraslow diffusion”, J. Math. Anal. Appl., 340 (2008), 252–281 | DOI | MR | Zbl