The Bitsadze--Samarskii problem for a loaded hyperbolic-parabolic equation with degeneracy of order in the hyperbolicity domain
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 123-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the nonlocal Bitsadze–Samarskii-type problem with internal boundary conditions for a loaded hyperbolic-parabolic equation with order degeneracy in the hyperbolicity domain. These boundary conditions are a special case of Nakhushev's nonlocal condition. We find the condition for existence and uniqueness of a solution to the problem and obtain a representation of the solution in the parabolic part of the domain and the explicit solution in the hyperbolic part of the domain.
Keywords: loaded equation, mixed-type equation, hyperbolic-parabolic equation, nonlocal problem, Bitsadze—Samarskii problem, Nakhushev's nonlocal condition.
@article{INTO_2021_198_a13,
     author = {K. U. Khubiev},
     title = {The {Bitsadze--Samarskii} problem for a loaded hyperbolic-parabolic equation with degeneracy of order in the hyperbolicity domain},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {123--132},
     publisher = {mathdoc},
     volume = {198},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a13/}
}
TY  - JOUR
AU  - K. U. Khubiev
TI  - The Bitsadze--Samarskii problem for a loaded hyperbolic-parabolic equation with degeneracy of order in the hyperbolicity domain
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 123
EP  - 132
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a13/
LA  - ru
ID  - INTO_2021_198_a13
ER  - 
%0 Journal Article
%A K. U. Khubiev
%T The Bitsadze--Samarskii problem for a loaded hyperbolic-parabolic equation with degeneracy of order in the hyperbolicity domain
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 123-132
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a13/
%G ru
%F INTO_2021_198_a13
K. U. Khubiev. The Bitsadze--Samarskii problem for a loaded hyperbolic-parabolic equation with degeneracy of order in the hyperbolicity domain. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 123-132. http://geodesic.mathdoc.fr/item/INTO_2021_198_a13/

[1] Abdullaev V. M., Aidazade K. R., “Podkhod k chislennomu resheniyu zadach optimalnogo upravleniya nagruzhennymi differentsialnymi uravneniyami s nelokalnymi usloviyami”, Zh. vychisl. mat. mat. fiz., 59:5 (2019), 739–751 | Zbl

[2] Asanova A. T., Imanchiev A. E., Kadirbaeva Zh. M., “O chislennom reshenii sistem obyknovennykh nagruzhennykh differentsialnykh uravnenii s mnogotochechnymi usloviyami”, Zh. vychisl. mat. mat. fiz., 58:4 (2018), 508–516 | DOI | DOI | Zbl

[3] Attaev A. Kh., “O nekotorykh zadachakh dlya nagruzhennogo differentsialnogo uravneniya v chastnykh proizvodnykh pervogo poryadka”, Vestn. KRAUNTs. Fiz.-mat. nauki., 16:4–1 (2016), 9–14 | DOI | MR | Zbl

[4] Attaev A. Kh., “Kraevye zadachi dlya nagruzhennogo volnovogo uravneniya”, Vestn. Karagand. un-ta. Ser. Mat., 86:2 (2017), 8–13

[5] Berezgova R. Z., “Ob odnoi nelokalnoi kraevoi zadache dlya nagruzhennogo uravneniya Makkendrika—fon Ferstera s operatorom Kaputo”, Vestn. KRAUNTs. Fiz.-mat. nauki., 2017, no. 3 (19), 5–9 | DOI | MR | Zbl

[6] Boziev O. L., “Reshenie nelineinogo giperbolicheskogo uravneniya priblizhenno-analiticheskim metodom”, Vestn. Tomsk. gos. un-ta. Mat. Mekh., 2018, no. 51, 5–14 | DOI | MR

[7] Vodakhova V. A., “Kraevaya zadacha s nelokalnym usloviem A. M. Nakhusheva dlya odnogo psevdoparabolicheskogo uravneniya vlagoperenosa”, Differ. uravn., 18:2 (1982), 280–285 | MR | Zbl

[8] Vodakhova V. A., “Ob odnoi kraevoi zadache dlya uravneniya tretego poryadka s nelokalnym usloviem A. M. Nakhusheva”, Differ. uravn., 19:1 (1983), 163–166 | MR | Zbl

[9] Dzhenaliev M. T., Ramazanov M. I., Nagruzhennye uravneniya kak vozmuscheniya differentsialnykh uravnenii, Almaty, 2010

[10] Dikinov Kh. Zh., Kerefov A. A., Nakhushev A. M., “Ob odnoi kraevoi zadache dlya nagruzhennogo uravneniya teploprovodnosti”, Differ. uravn., 12:1 (1976), 177–179 | MR | Zbl

[11] Ilin V. A., Moiseev E. I., “Nelokalnaya kraevaya zadacha dlya operatora Shturma—Liuvillya v differentsialnoi i v raznostnoi traktovkakh”, Dokl. AN SSSR., 291:3 (1986), 534–539 | MR | Zbl

[12] Ilin V. A., Moiseev E. I., “O edinstvennosti resheniya smeshannoi zadachi dlya volnovogo uravneniya s nelokalnymi granichnymi usloviyami”, Differ. uravn., 36:5 (2000), 656–661 | DOI | MR

[13] Kozhanov A. I., “O razreshimosti kraevykh zadach s nelokalnym usloviem Bitsadze—Samarskogo dlya lineinykh giperbolicheskikh uravnenii”, Dokl. RAN., 432:6 (2010), 738–740 | Zbl

[14] Mirsaburov M., Khairullaev I. N., Bobomurodov U. E., “Ob odnom obobschenii zadachi Bitsadze—Samarskogo dlya uravneniya smeshannogo tipa”, Izv. vuzov. Mat., 2016, no. 10, 36–40 | DOI | Zbl

[15] Napso A. F., “O zadache Bitsadze—Samarskogo dlya uravneniya parabolicheskogo tipa”, Differ. uravn., 13:4 (1977), 761–762 | MR | Zbl

[16] Napso A. F., “Ob odnoi nelokalnoi zadache dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Differ. uravn., 14:1 (1978), 185–186 | MR | Zbl

[17] Nakhushev A. M., “Kraevye zadachi dlya nagruzhennogo integrodifferentsialnogo uravneniya giperbolicheskogo tipa i nekotorye ikh prilozheniya k prognozu pochvennoi vlagi”, Differ. uravn., 15:1 (1979), 96–105 | MR | Zbl

[18] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995 | Zbl

[19] Nakhushev A. M., Nagruzhennye uravneniya i ikh primeneniya, Nauka, M., 2012

[20] Nakhushev A. M., “K teorii kraevykh zadach dlya nagruzhennykh integralnykh uravnenii”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 16:3 (2014), 30–34

[21] Nakhusheva Z. A., “Ob odnoi nelokalnoi ellipticheskoi kraevoi zadache tipa zadachi Bitsadze—Samarskogo”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 15:1 (2013), 18–23 | MR

[22] Sabitov K. B., “Nachalno-granichnaya zadacha dlya parabolo-giperbolicheskogo uravneniya s nagruzhennymi slagaemymi”, Izv. vuzov. Mat., 2015, no. 6, 31–42 | DOI | Zbl

[23] Sabitov K. B., Melisheva E. P., “Zadacha Dirikhle dlya nagruzhennogo uravneniya smeshannogo tipa v pryamougolnoi oblasti”, Izv. vuzov. Mat., 2013, no. 7, 62–76 | DOI | Zbl

[24] Sabitova Yu. K., “Zadacha Dirikhle dlya uravneniya Lavrenteva—Bitsadze s nagruzhennymi slagaemymi”, Izv. vuzov. Mat., 2018, no. 9, 42–58 | DOI | Zbl

[25] Tarasenko A. V., “O razreshimosti nelokalnoi zadachi dlya nagruzhennogo parabolo-giperbolicheskogo uravneniya”, Izv. vuzov. Mat., 2018, no. 3, 62–69 | DOI | Zbl

[26] Khubiev K. U., “Vnutrennekraevaya zadacha dlya nagruzhennogo uravneniya smeshannogo tipa”, Izv. vuzov. Sev.-Kavkaz. region. Estestv. nauki., 2008, no. 6 (148), 23–25

[27] Khubiev K. U., “O printsipe ekstremuma dlya nagruzhennykh uravnenii”, Dokl. Adyg. (Cherkes.) Mezhdunar. akad. nauk., 16:3 (2014), 47–50

[28] Khubiev K. U., “Printsip maksimuma dlya nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa”, Vladikavkaz. mat. zh., 18:4 (2016), 80–85 | MR | Zbl

[29] Khubiev K. U., “Analog zadachi Trikomi dlya kharakteristicheski nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa s peremennymi koeffitsientami”, Ufimsk. mat. zh., 9:2 (2017), 94–103 | DOI | MR | Zbl

[30] Khubiev K. U., “Zadachi so smescheniem dlya nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa s operatorom drobnoi diffuzii”, Vestn. Udmurtsk. un-ta. Mat. Mekh. Kompyut. nauki., 28:1 (2018), 82–90 | DOI | MR | Zbl

[31] Khubiev K. U., “Kraevaya zadacha dlya nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa s vyrozhdeniem poryadka v oblasti ego giperbolichnosti”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 149 (2018), 113–117 | MR

[32] Khubiev K. U., “Zadacha tipa zadachi Bitsadze—Samarskogo dlya nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa”, Mat. zametki SVFU., 26:2 (2019), 31–40 | DOI | Zbl

[33] Khubiev K. U., “Zadacha Bitsadze—Samarskogo dlya odnogo kharakteristicheski nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 23:4 (2019), 789–796 | DOI | Zbl

[34] Attaev A. Kh., “The Cauchy problem for the McKendrick–von Foerster loaded equation”, Int. J. Pure Appl. Math., 113:4 (2017), 47–52 https://ijpam.eu/contents/2017-113-4/5/5.pdf | DOI

[35] Baltaeva U. I., “On the solvability of boundary-value problems with continuous and generalized gluing conditions for the equation of mixed type with loaded term”, Ukrain. Math. J., 69:12 (2018), 1845–1854 | DOI | MR | Zbl

[36] Baltaeva U., Agarwal P., “Boundary-value problems for the third-order loaded equation with noncharacteristic type-change boundaries”, Math. Meth. Appl. Sci., 41:9 (2018), 3307–3315 | DOI | MR | Zbl

[37] Sadarangani K. B., Abdullaev O. Kh., “About a problem for loaded parabolic-hyperbolic type equation with fractional derivatives”, Int. J. Differ. Equations., 2016 (2016), 9815796 | DOI | Zbl