Nonlinear integro-differential equations with difference kernels
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 22-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a summary of recent results obtained for nonlinear integro-differential equations of convolution type and singular integro-differential equations with Hilbert and Cauchy kernels. For nonnegative continuous solutions, we use the method of weight metrics (an analog, while for summable solutions on arbitrary sign, the “monotonicity” method (the Minty–Browder monotone operators) is applied.
Keywords: monotone operator, convolution operator, singular operator, nonlinear integro-differential equation.
@article{INTO_2021_198_a1,
     author = {S. N. Askhabov},
     title = {Nonlinear integro-differential equations with difference kernels},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {22--32},
     publisher = {mathdoc},
     volume = {198},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a1/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Nonlinear integro-differential equations with difference kernels
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 22
EP  - 32
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a1/
LA  - ru
ID  - INTO_2021_198_a1
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Nonlinear integro-differential equations with difference kernels
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 22-32
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a1/
%G ru
%F INTO_2021_198_a1
S. N. Askhabov. Nonlinear integro-differential equations with difference kernels. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 22-32. http://geodesic.mathdoc.fr/item/INTO_2021_198_a1/

[1] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009

[2] Askhabov S. N., “Singulyarnye integro-differentsialnye uravneniya s yadrom Gilberta i monotonnoi nelineinostyu”, Vladikavkaz. mat. zh., 19:3 (2017), 11–20 | MR | Zbl

[3] Askhabov S. N., “Usloviya polozhitelnosti operatorov s raznostnymi yadrami v refleksivnykh prostranstvakh”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 149 (2018), 3–13

[4] Askhabov S. N., “Nelineinye singulyarnye integro-differentsialnye uravneniya s proizvolnym parametrom”, Mat. zametki., 103:1 (2018), 20–26 | MR | Zbl

[5] Askhabov S. N., “Integro-differentsialnye uravneniya tipa svertki so stepennoi nelineinostyu”, Mat. Mezhdunar. konf. «Sovremennye problemy matematiki i mekhaniki», posvyaschennoi 80-letiyu akad. V. A. Sadovnichego (Moskva, 13–-15 maya 2019 g.), MAKS Press, M., 2019, 11–14

[6] Askhabov S. N., “Metod maksimalnykh monotonnykh operatorov v teorii nelineinykh integro-differentsialnykh uravnenii tipa svertki”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 167 (2019), 3–12

[7] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[8] Guseinov A. I., Mukhtarov Kh. Sh., Vvedenie v teoriyu nelineinykh singulyarnykh integralnykh uravnenii, Nauka, M., 1980

[9] Kogan Kh. M., “Ob odnom singulyarnom integro-differentsialnom uravnenii”, Differ. uravn., 3:2 (1967), 278–293

[10] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962

[11] Magomedov G. M., “Metod monotonnosti v teorii nelineinykh singulyarnykh integralnykh i integro-differentsialnykh uravnenii”, Differ. uravn., 13:6 (1977), 1106–1112

[12] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[13] Khachatryan Kh. A., “O razreshimosti v $W_1^1(\mathbb R^+)$ odnogo nelineinogo integro-differentsialnogo uravneniya s nekompaktnym operatorom Gammershteina—Nemytskogo”, Alg. anal., 24:1 (2012), 223–247

[14] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[15] Brunner H., Volterra Integral Equations: An Itroduction to Theory and Applications, Cambridge Univ. Press, Cambridge, 2017

[16] Okrasinski W., “On the existence and uniqueness of nonnegative solutions of a certain nonlinear convolution equation”, Ann. Polon. Math., 36:1 (1979), 61–72 | DOI | MR | Zbl

[17] Wolfersdorf L. V., “Monotonicity methods for nonlinear singular integral and integro-differential equations”, J. Appl. Math. Mech., 63:6 (1983), 249–259 | Zbl