Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_198_a1, author = {S. N. Askhabov}, title = {Nonlinear integro-differential equations with difference kernels}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {22--32}, publisher = {mathdoc}, volume = {198}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a1/} }
TY - JOUR AU - S. N. Askhabov TI - Nonlinear integro-differential equations with difference kernels JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 22 EP - 32 VL - 198 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_198_a1/ LA - ru ID - INTO_2021_198_a1 ER -
%0 Journal Article %A S. N. Askhabov %T Nonlinear integro-differential equations with difference kernels %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 22-32 %V 198 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_198_a1/ %G ru %F INTO_2021_198_a1
S. N. Askhabov. Nonlinear integro-differential equations with difference kernels. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 22-32. http://geodesic.mathdoc.fr/item/INTO_2021_198_a1/
[1] Askhabov S. N., Nelineinye uravneniya tipa svertki, Fizmatlit, M., 2009
[2] Askhabov S. N., “Singulyarnye integro-differentsialnye uravneniya s yadrom Gilberta i monotonnoi nelineinostyu”, Vladikavkaz. mat. zh., 19:3 (2017), 11–20 | MR | Zbl
[3] Askhabov S. N., “Usloviya polozhitelnosti operatorov s raznostnymi yadrami v refleksivnykh prostranstvakh”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 149 (2018), 3–13
[4] Askhabov S. N., “Nelineinye singulyarnye integro-differentsialnye uravneniya s proizvolnym parametrom”, Mat. zametki., 103:1 (2018), 20–26 | MR | Zbl
[5] Askhabov S. N., “Integro-differentsialnye uravneniya tipa svertki so stepennoi nelineinostyu”, Mat. Mezhdunar. konf. «Sovremennye problemy matematiki i mekhaniki», posvyaschennoi 80-letiyu akad. V. A. Sadovnichego (Moskva, 13–-15 maya 2019 g.), MAKS Press, M., 2019, 11–14
[6] Askhabov S. N., “Metod maksimalnykh monotonnykh operatorov v teorii nelineinykh integro-differentsialnykh uravnenii tipa svertki”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 167 (2019), 3–12
[7] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978
[8] Guseinov A. I., Mukhtarov Kh. Sh., Vvedenie v teoriyu nelineinykh singulyarnykh integralnykh uravnenii, Nauka, M., 1980
[9] Kogan Kh. M., “Ob odnom singulyarnom integro-differentsialnom uravnenii”, Differ. uravn., 3:2 (1967), 278–293
[10] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962
[11] Magomedov G. M., “Metod monotonnosti v teorii nelineinykh singulyarnykh integralnykh i integro-differentsialnykh uravnenii”, Differ. uravn., 13:6 (1977), 1106–1112
[12] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003
[13] Khachatryan Kh. A., “O razreshimosti v $W_1^1(\mathbb R^+)$ odnogo nelineinogo integro-differentsialnogo uravneniya s nekompaktnym operatorom Gammershteina—Nemytskogo”, Alg. anal., 24:1 (2012), 223–247
[14] Edvards R., Funktsionalnyi analiz, Mir, M., 1969
[15] Brunner H., Volterra Integral Equations: An Itroduction to Theory and Applications, Cambridge Univ. Press, Cambridge, 2017
[16] Okrasinski W., “On the existence and uniqueness of nonnegative solutions of a certain nonlinear convolution equation”, Ann. Polon. Math., 36:1 (1979), 61–72 | DOI | MR | Zbl
[17] Wolfersdorf L. V., “Monotonicity methods for nonlinear singular integral and integro-differential equations”, J. Appl. Math. Mech., 63:6 (1983), 249–259 | Zbl