Nonlinear integro-differential equations with difference kernels
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 22-32

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a summary of recent results obtained for nonlinear integro-differential equations of convolution type and singular integro-differential equations with Hilbert and Cauchy kernels. For nonnegative continuous solutions, we use the method of weight metrics (an analog, while for summable solutions on arbitrary sign, the “monotonicity” method (the Minty–Browder monotone operators) is applied.
Keywords: monotone operator, convolution operator, singular operator, nonlinear integro-differential equation.
@article{INTO_2021_198_a1,
     author = {S. N. Askhabov},
     title = {Nonlinear integro-differential equations with difference kernels},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {22--32},
     publisher = {mathdoc},
     volume = {198},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a1/}
}
TY  - JOUR
AU  - S. N. Askhabov
TI  - Nonlinear integro-differential equations with difference kernels
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 22
EP  - 32
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a1/
LA  - ru
ID  - INTO_2021_198_a1
ER  - 
%0 Journal Article
%A S. N. Askhabov
%T Nonlinear integro-differential equations with difference kernels
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 22-32
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a1/
%G ru
%F INTO_2021_198_a1
S. N. Askhabov. Nonlinear integro-differential equations with difference kernels. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 22-32. http://geodesic.mathdoc.fr/item/INTO_2021_198_a1/