On an initial-boundary-value problem for a fourth-order system of loaded differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 3-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider an initial-boundary-value problem for a system of loaded fourth-order differential equations. By introducing additional unknown functions, we reduce the problem to an equivalent problem for a system of loaded second-order hyperbolic equations with functional parameters and integral relations and propose algorithms for solving this problem. Solvability conditions of a nonlocal multipoint problem for a system of loaded second-order hyperbolic equations are set up. Moreover, conditions for the existence of a unique classical solution to the initial-boundary-value problem for a system of loaded differential equations of the fourth order are established.
Keywords: initial-boundary-value problem, system of loaded fourth-order differential equations, nonlocal problem, system of loaded hyperbolic equations.
@article{INTO_2021_198_a0,
     author = {A. T. Assanova and Sh. T. Shekerbekova},
     title = {On an initial-boundary-value problem for a fourth-order system of loaded differential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--21},
     publisher = {mathdoc},
     volume = {198},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_198_a0/}
}
TY  - JOUR
AU  - A. T. Assanova
AU  - Sh. T. Shekerbekova
TI  - On an initial-boundary-value problem for a fourth-order system of loaded differential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 3
EP  - 21
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_198_a0/
LA  - ru
ID  - INTO_2021_198_a0
ER  - 
%0 Journal Article
%A A. T. Assanova
%A Sh. T. Shekerbekova
%T On an initial-boundary-value problem for a fourth-order system of loaded differential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 3-21
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_198_a0/
%G ru
%F INTO_2021_198_a0
A. T. Assanova; Sh. T. Shekerbekova. On an initial-boundary-value problem for a fourth-order system of loaded differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Physics, Tome 198 (2021), pp. 3-21. http://geodesic.mathdoc.fr/item/INTO_2021_198_a0/

[1] Asanova A. T., Imanchiev A. E., Kadirbaeva Zh. M., “O chislennom reshenii sistem obyknovennykh nagruzhennykh differentsialnykh uravnenii s mnogotochechnymi usloviyami”, Zh. vychisl. mat. mat. fiz., 58:4 (2018), 520–529 | Zbl

[2] Asanova A. T., Kadirbaeva Zh. M., Bakirova E. A., “Ob odnoznachnoi razreshimosti nelokalnoi kraevoi zadachi dlya sistem nagruzhennykh giperbolicheskikh uravnenii s impulsnymi vozdeistviyami”, Ukr. mat. zh., 69:8 (2018), 1175–1195 | MR | Zbl

[3] Dzhokhadze O. M., “Funktsiya Rimana dlya giperbolicheskikh uravnenii i sistem vysokogo poryadka s dominirovannymi mladshimi chlenami”, Differ. uravn., 39:10 (2003), 1366–1378 | MR | Zbl

[4] Dzhumabaev D. S., “Priznaki odnoznachnoi razreshimosti lineinoi kraevoi zadachi dlya obyknovennogo differentsialnogo uravneniya”, Zh. vychisl. mat. mat. fiz., 29:1 (1989), 50–66 | MR | Zbl

[5] Kiguradze T. I., Kusano T., “O korrektnosti nachalno-kraevykh zadach dlya lineinykh giperbolicheskikh uravnenii vysshikh poryadkov s dvumya nezavisimymi peremennymi”, Differ. uravn., 39:4 (2003), 516–526 | MR | Zbl

[6] Kiguradze T. I., Kusano T., “O nekorrektnykh nachalno-kraevykh zadachakh dlya lineinykh giperbolicheskikh uravnenii vysshikh poryadkov s dvumya nezavisimymi peremennymi”, Differ. uravn., 39:10 (2003), 1379–1394 | MR | Zbl

[7] Mamedov I. G., “Fundamentalnoe reshenie nachalno-kraevoi zadachi dlya psevdoparabolicheskogo uravneniya chetvertogo poryadka s negladkimi koeffitsientami”, Vladikavkaz. mat. zh., 12:1 (2010), 17–32 | MR | Zbl

[8] Mamedov I. G., “Nelokalnaya kombinirovannaya zadacha tipa Bitsadze—Samarskogo i Samarskogo—Ionkina dlya sistemy psevdoparabolicheskikh uravnenii”, Vladikavkaz. mat. zh., 16:1 (2014), 30–41 | MR | Zbl

[9] Nakhushev A. M., Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006

[10] Nakhushev A. M., Nagruzhennye uravneniya i ikh primeneniya, Nauka, M., 2012

[11] Ptashnik B. I., Nekorrektnye granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Naukova dumka, Kiev, 1984

[12] Assanova A. T., Kadirbayeva Z. M., “Periodic problem for an impulsive system of the loaded hyperbolic equations”, Electron. J. Differ. Equations., 2018:72 (2018), 1–8 | MR

[13] Assanova A. T., Kadirbayeva Z. M., “On the numerical algorithms of parametrization method for solving a two-point boundary-value problem for impulsive systems of loaded differential equations”, Comput. Appl. Math., 37:4 (2018), 4966–4976 | DOI | MR | Zbl

[14] Boichuk A. A., Samoilenko A. M., Generalized Inverse Operators and Fredholm Boundary-Value Problems, De Gruyter, Berlin, 2016 | Zbl

[15] Burton T. A., Integral and Differential Equations, Academic Press, New York, 1983 | Zbl

[16] Kiguradze I., Kiguradze T., “On solvability of boundary value problems for higher-order nonlinear hyperbolic equations”, Nonlin. Anal., 69 (2008), 1914–1933 | DOI | Zbl

[17] Kiguradze T., “On solvability and well-posedness of boundary value problems for nonlinear hyperbolic equations of the fourth order”, Georgian Math. J., 15:3 (2008), 555–569 | DOI | MR | Zbl

[18] Kiguradze T., “The Valle-Poussin problem for higher order nonlinear hyperbolic equations”, Comput. Math. Appl., 59 (2010), 994—1002 | DOI | MR | Zbl

[19] Kiguradze T., Lakshmikantham V., “On the Dirichlet problem for fourth order linear hyperbolic equations”, Nonlin. Anal., 49:2 (2002), 197–219 | DOI | MR | Zbl

[20] Kiguradze T., Lakshmikantham V., “On Dirichlet problem in a characteristic rectangle for higher order linear hyperbolic equations”, Nonlin. Anal., 50:8 (2002), 1153–1178 | DOI | MR | Zbl

[21] Lakshmikantham V., Rao M. R. M., Theory of Integro-Differential Equations, Gordon Breach, Lausanne, 1995 | Zbl

[22] Mamedov I. G., “On correct solvability of a problem with a loaded boundary conditions for a fourth order pseudoparabolic equation”, Mem. Differ. Equ. Math. Phys., 43 (2008), 107–118 | Zbl

[23] Midodashvili B., “Generalized Goursat problem for a spatial fourth order hyperbolic equation with dominated low terms”, Proc. A. Razmadze Math. Inst., 138 (2005), 43–54 | MR | Zbl

[24] Prüss J., Evolutionary Integral Equations and Applications, Springer-Verlag, Basel, 1993

[25] Wazwaz A.-M., Linear and Nonlinear Integral Equations. Methods and Applications, Springer-Verlag, Heidelberg, 2011 | Zbl

[26] Zhang H., Han X., Yang X., “Quintic $B$-spline collocation method for fourth order partial integro-differential equations with a weakly singular kernel”, Appl. Math. Comput., 219 (2013), 6565–6575 | MR | Zbl