Metrization of the space of weakly additive order-preserving homogeneous functionals
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 88-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the study of the space of weakly additive, order-preserving, normalized, and homogeneous functionals on a compact metric space. For a metric compact space $X$, we propose a formula for calculating the Kantorovich–Rubinstein metric on the space of weakly additive, order-preserving, homogeneous functionals $S(X)$. Also, we prove that the superextension $\lambda(X)$ of the compact set $X$ is isometrically embedded in the space $S(X)$.
Keywords: weakly additive functional, Kantorovich–Rubinstein metric, hyperspace, superextension.
@article{INTO_2021_197_a9,
     author = {G.F.Djabbarov and M. M. Jabborov},
     title = {Metrization of the space of weakly additive order-preserving homogeneous functionals},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {88--94},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a9/}
}
TY  - JOUR
AU  - G.F.Djabbarov
AU  - M. M. Jabborov
TI  - Metrization of the space of weakly additive order-preserving homogeneous functionals
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 88
EP  - 94
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a9/
LA  - ru
ID  - INTO_2021_197_a9
ER  - 
%0 Journal Article
%A G.F.Djabbarov
%A M. M. Jabborov
%T Metrization of the space of weakly additive order-preserving homogeneous functionals
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 88-94
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a9/
%G ru
%F INTO_2021_197_a9
G.F.Djabbarov; M. M. Jabborov. Metrization of the space of weakly additive order-preserving homogeneous functionals. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 88-94. http://geodesic.mathdoc.fr/item/INTO_2021_197_a9/

[1] V'lov V., “Ekstendery i $\varkappa$-metrizuemye kompakty”, Mat. zametki., 89 (2011), 319–327 | MR

[2] Dzhabbarov G. F., “Opisanie ekstremalnykh tochek prostranstva slabo additivnykh polozhitelno-odnorodnykh funktsionalov dvukhtochechnogo mnozhestva”, Uzbek. mat. zh., 3 (2005), 17–25 | MR

[3] Dzhabbarov G. F., “Kategornye svoistva funktora slabo additivnykh polozhitelno odnorodnykh funktsionalov”, Uzbek. mat. zh., 2 (2006), 20–28 | MR

[4] Zaitov A. A., “Teorema ob otkrytom otobrazhenii prostranstv slabo additivnykh odnorodnykh funktsionalov”, Mat. zametki., 88:5 (2010), 683–688 | MR | Zbl

[5] Kantorovich L. V., Rubinshtein G. Sh., “Ob odnom funktsionalnom prostranstve i nekotorykh ekstremalnykh zadachakh”, Dokl. AN SSSR., 115:6 (1957), 1058–1061 | Zbl

[6] Kantorovich L. V., Rubinshtein G. Sh., “O prostranstve vpolne additivnykh funktsii”, Vestn. Leningrad. un-ta. Mat., 13 (1958), 52–59 | Zbl

[7] Sadovnichii Yu. V., “Podnyatie funktorov $U_\tau$ i $U_R$ na kategoriyu ogranichennykh metricheskikh prostranstv i kategoriyu ravnomernykh prostranstv”, Mat. sb., 191:11 (2000), 79–104 | MR | Zbl

[8] Fedorchuk V. V., “Troiki beskonechnykh iteratsii metrizuemykh funktorov”, Izv. AN SSSR. Ser. mat., 54:2 (1990), 396–417

[9] Shapiro L. B., “Ob operatorakh prodolzheniya funktsii i normalnykh funktorakh”, Vestn. Mosk. un-ta. Ser. 1. Mat. mekh., 1992, no. 1, 35–42 | Zbl

[10] Davletov D. E., Djabbarov G. F., “Functor of semi-additive functionals”, Meth. Funct. Anal. Topol., 14:4 (2008), 317–322 | MR

[11] Djabbarov G. F., “Metrization of the space of weakly additive positively homogeneous functionals”, Topology Appl., 221 (2017), 133–143 | DOI | MR | Zbl

[12] Radul T., “On the functor of order-preserving functionals”, Comment. Math. Univ. Carol., 39:3 (1998), 609–615 | MR | Zbl

[13] Verbeek A., Superextensions of Topological Spaces, Amsterdam, 1972 | Zbl