Topological properties of the space of $G$-symmetric degree
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 78-87

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the weight, character, locally weak density, and metrizability of the space of $G$-symmetric degree. We proved that the mapping $\pi_{n,G}^{s}$ is open-closed, and the functor $SP_{G}^{n}$ preserves weight, net weight, character, local weak density, the Hausdorff property, regularity, completely regularity, metrizability, and connectedness.
Keywords: open-closed mapping, metrizability, weight, weak density, connectedness, character.
@article{INTO_2021_197_a8,
     author = {R. B. Beshimov and R. M. Juraev},
     title = {Topological properties of the space of $G$-symmetric degree},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {78--87},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a8/}
}
TY  - JOUR
AU  - R. B. Beshimov
AU  - R. M. Juraev
TI  - Topological properties of the space of $G$-symmetric degree
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 78
EP  - 87
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a8/
LA  - ru
ID  - INTO_2021_197_a8
ER  - 
%0 Journal Article
%A R. B. Beshimov
%A R. M. Juraev
%T Topological properties of the space of $G$-symmetric degree
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 78-87
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a8/
%G ru
%F INTO_2021_197_a8
R. B. Beshimov; R. M. Juraev. Topological properties of the space of $G$-symmetric degree. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 78-87. http://geodesic.mathdoc.fr/item/INTO_2021_197_a8/