Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_197_a8, author = {R. B. Beshimov and R. M. Juraev}, title = {Topological properties of the space of $G$-symmetric degree}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {78--87}, publisher = {mathdoc}, volume = {197}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a8/} }
TY - JOUR AU - R. B. Beshimov AU - R. M. Juraev TI - Topological properties of the space of $G$-symmetric degree JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 78 EP - 87 VL - 197 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_197_a8/ LA - ru ID - INTO_2021_197_a8 ER -
%0 Journal Article %A R. B. Beshimov %A R. M. Juraev %T Topological properties of the space of $G$-symmetric degree %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 78-87 %V 197 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_197_a8/ %G ru %F INTO_2021_197_a8
R. B. Beshimov; R. M. Juraev. Topological properties of the space of $G$-symmetric degree. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 78-87. http://geodesic.mathdoc.fr/item/INTO_2021_197_a8/
[1] Beshimov R. B., “O slaboi plotnosti nepreryvnykh otobrazhenii”, Uzbek. mat. zh., 1 (2001), 3–8 | MR
[2] Zarichnyi M. M., “Kharakterizatsiya funktorov $G$-simmetricheskoi stepeni i prodolzheniya funktorov na kategorii Kleisli”, Mat. zametki., 52:5 (1992), 42–48 | MR | Zbl
[3] Fedorchuk V. V., “Kovariantnye funktory v kategorii kompaktov, absolyutnye retrakty i $Q$-mnogoobraziya”, Usp. mat. nauk., 3 (36) (1981), 177–195 | Zbl
[4] Fedorchuk V. V., Filippov V. V., Topologiya giperprostranstv i ee prilozheniya, Znanie, M., 1989
[5] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Fizmatlit, M., 2006
[6] Engelking R., Obschaya topologiya, Mir, M., 1986
[7] Beshimov R. B., “Some cardinal properties of topological space connected with weakly density”, Meth. Funct. Anal. Topol., 10:3 (2004), 17–22 | MR | Zbl
[8] Beshimov R. B., “On some cardinal invariants of hyperspaces”, Mat. Stud., 24:2 (2005), 197–202 | MR | Zbl
[9] Beshimov R. B., Mukhamadiev F. G. and Mamadaliev N. K., “The local density and the local weak density of hyperspaces”, Int. J. Geom., 4:1 (2015), 42–49 | Zbl
[10] Beshimov R. B., Safarova D. T., “Normal functors and two P. S. Aleksandrov's arrows”, Caspian J. Appl. Math., 1:2 (2013), 50–59
[11] Beshimov R. B., Zhuraev R. M., “Separation axioms of space of the permutation degree”, Tr. Mezhdunar. konf. «Sovremennye problemy geometrii i topologii i ikh prilozheniya» (Tashkent, 21–23 noyabrya 2019 g.), Tashkent, 2019, 30–31
[12] Michael E., “Topologies on spaces of subsets”, Trans. Am. Math. Soc., 71 (1951), 152–182 | DOI | Zbl
[13] Mukhamadiev F., “Some cardinal and topological properties of the $n$-permutation degree of a topological spaces and locally $\tau$-density of hyperspaces”, Bull. Natl. Univ. Uzbekistan. Math. Nat. Sci., 1:1 (2018), 3–25 | MR