Isometry groups of foliated manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 117-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the group of isometries of foliated manifolds. We prove that there is a foliation for which there exists an element of the isometry group of the foliated manifold, which is not an element of the isometry group.
Mots-clés : foliation
Keywords: diffeomorphism of foliated manifold, $F$-compactly open topology, isometry group of a foliated manifold.
@article{INTO_2021_197_a13,
     author = {A. S. Sharipov},
     title = {Isometry groups of foliated manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {117--123},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a13/}
}
TY  - JOUR
AU  - A. S. Sharipov
TI  - Isometry groups of foliated manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 117
EP  - 123
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a13/
LA  - ru
ID  - INTO_2021_197_a13
ER  - 
%0 Journal Article
%A A. S. Sharipov
%T Isometry groups of foliated manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 117-123
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a13/
%G ru
%F INTO_2021_197_a13
A. S. Sharipov. Isometry groups of foliated manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 117-123. http://geodesic.mathdoc.fr/item/INTO_2021_197_a13/

[1] Aranson S. Kh., “Topologiya vektornykh polei, sloenii s osobennostyami i gomeomorfizmov s invariantnymi sloeniyami na zamknutykh poverkhnostyakh”, Tr. Mat. in-ta im. V. A. Steklova RAN., 193 (1992), 15–21, M. | Zbl

[2] Grines V. Z., Levchenko Yu. A., Pochinka O. V., “O topologicheskoi klassifikatsii strukturno ustoichivykh $3$-diffeomorfizmov s dvumernymi bazisnymi mnozhestvami”, Mat. zametki., 97:2 (2015), 318-–320

[3] Grines V. Z., Pochinka O. V., “Kaskady Morsa—Smeila na $3$-mnogoobraziyakh”, Usp. mat. nauk., 68:1 (409) (2013), 129–188 | MR | Zbl

[4] Lukatskii A. M., “Konechnoporozhdennost grupp diffeomorfizmov”, Usp. mat. nauk., 33:1 (199) (1978), 219–220 | MR | Zbl

[5] Lukatskii A. M., “Issledovanie geodezicheskogo potoka na beskonechnomernoi gruppe Li s ispolzovaniem operatora koprisoedinennogo deistviya”, Tr. Mat. in-ta im. V. A. Steklova RAN., 267 (2009), 204–213 | MR

[6] Narmanov A. Ya., Saitova S. S., “O geometrii orbit vektornykh polei Killinga”, Differ. uravn., 50:12 (2014), 1582–1589 | Zbl

[7] Narmanov A. Ya., Skorobogatov D., “Izometricheskie otobrazheniya sloenii”, Dokl. AN RUz., 4 (2004), 12–16

[8] Pochinka O. V., “Klassifikatsiya diffeomorfizmov Morsa—Smeila na $3$-mnogoobraziyakh”, Dokl. RAN., 440:6 (2011), 34-–37

[9] Rokhlin V. A., Fuks D. B., Nachalnyi kurs topologii, Nauka, M., 1977

[10] Skorobogatov D., “Zadacha ob izometrii sloenii korazmernosti odin”, Uzbek. mat. zh., 5–6 (2000), 55–62

[11] Tamura I., Topologiya sloenii., Mir, M., 1979

[12] Khelgason S., Differentsialnaya geometriya, gruppy Li i simmetricheskie prostranstva, Faktoral Press, M., 2005

[13] Antonelli P. L., Burghelea D., Kahn P. J., “The non-finite type of some diffeomorphism groups”, Topol., 11 (1972), 1–49 | DOI | Zbl

[14] Arnold V., “Sur la géométrie différentielle des groupes de Lie de dimenzion infnite et ses applications à l'hidrodynamique des uides parfaits”, Ann. Inst. Fourier., 16:1 (1966), 319–361 | DOI | MR | Zbl

[15] Ehresmann C., “Structures feuilletées”, Proceedings of the Fifth Canadian Mathematical Congress. University of Montreal, 1961, University of Toronto Press, 1963, 109–172 | DOI

[16] Haefliger A., “Varietes feuilletées”, Ann. Scu. Norm. Sup. Pisa., 16 (1962), 367–397 | Zbl

[17] Lamoureux G., “Variétés feuilletées — Transversales fermées”, C. R. Acad. Sci. Paris., 270 (1970), 1659–1662 | MR

[18] Langevin R., Rosenberg H., “Feuilletages de codimension 1”, Topol., 16 (1977), 107–111 | DOI | Zbl

[19] Lawson H., “Foliations”, Bull. Am. Math. Soc., 80 (1974), 369–418 | DOI | Zbl

[20] Molino P., Riemannian Foliations, Birkhäuser, Boston, 1988

[21] Myers S. B., Steenrod N., “The group of isometries of Riemannian manifold”, Ann. Math., 40 (1939), 400–416 | DOI | MR

[22] Narmanov A. Ya., Sharipov A. S., “On the group of foliation isometries”, Meth. Funct. Anal. Topol., 15 (2009), 195–200 | Zbl

[23] Omori H., “On the group of diffeomorphisms on a compact manifold”, Proc. Symp. Pure Math., 15 (1970), 167–183 | DOI | Zbl

[24] Omori H., “Group of diffeomorphisms and thier subgroups”, Trans. Am. Math. Soc., 79:1 (1973), 85–122 | DOI

[25] Reeb G., Sur certains proprietes topoloiques des variétés feuilletées, Hermann, Paris, 1952

[26] Tondeur Ph., Foliations on Riemannian Manifolds, Springer-Verlag, New York, 1988 | Zbl