Uniform space and its hyperspace
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 108-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine some topological properties of uniform spaces and their hyperspaces. We prove that a uniform space $(X,\mathscr{U})$ is uniformly precompact if and only if $ (\exp_{c}X, \exp_{c}\mathscr{U})$ is uniformly precompact. Also we prove that the uniform hyperspace $(\exp_{c}X, \exp_{c} \mathscr{U})$ preserves uniformly local compactness, uniform connection, uniform paracompactness, and uniform $R$-paracompactness.
Keywords: uniform space, uniformity, uniformly connected space, uniformly paracompact space, uniformly $R$-paracompact space.
@article{INTO_2021_197_a12,
     author = {R. B. Beshimov and D. T. Safarova},
     title = {Uniform space and its hyperspace},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {108--116},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a12/}
}
TY  - JOUR
AU  - R. B. Beshimov
AU  - D. T. Safarova
TI  - Uniform space and its hyperspace
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 108
EP  - 116
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a12/
LA  - ru
ID  - INTO_2021_197_a12
ER  - 
%0 Journal Article
%A R. B. Beshimov
%A D. T. Safarova
%T Uniform space and its hyperspace
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 108-116
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a12/
%G ru
%F INTO_2021_197_a12
R. B. Beshimov; D. T. Safarova. Uniform space and its hyperspace. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 108-116. http://geodesic.mathdoc.fr/item/INTO_2021_197_a12/

[1] Arkhangelskii A. V., Ponomarev V. I., Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974

[2] Borubaev A. A., Ravnomernaya topologiya, Ilim, Bishkek, 2013

[3] Engelking R., Obschaya topologiya, Mir, M., 1986

[4] Beshimov R. B., Safarova D. T., “Uniform space and its hyperspace”, Tr. Mezhdunar. konf. «Sovremennye problemy geometrii i topologii i ikh prilozheniya» (Tashkent, 21–23 noyabrya 2019 g.), Tashkent, 2019, 29–30

[5] Chi-Keung Ng., “Coarse metric and uniform metric”, Topology Appl., 260 (2019), 1–12 | DOI | MR | Zbl

[6] Fedorchuk V. V., “On a preservation of completeness of uniform spaces by the functor $P_{\tau}$”, Topology Appl., 91 (1999), 25–45 | DOI | MR | Zbl

[7] Fedorchuk V. V., Sadovnichii Yu. V., “On some categorical properties of uniform space of probability measures”, Topology Appl., 82 (1998), 131–151 | DOI | MR | Zbl

[8] Isbell J. R., Uniform spaces, Providence, Rhode Island, 1964 | Zbl

[9] James I. M., Topological and Uniform Spaces, Springer, New York, 1987 | Zbl

[10] Salvador R., Miguel A., Sanchez G., “Compactifications of quasi-uniform hyperspaces”, Topology Appl., 127 (2003), 409–423 | DOI | MR | Zbl

[11] Michael E., “Topologies on spaces of supsets”, Trans. Am. Math. Soc., 71:1 (1951), 152–172 | DOI

[12] Mizakami T., “On hyperspaces of generalized metric spaces”, Topology Appl., 76 (1997), 169–173 | DOI | MR