Uniform space and its hyperspace
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 108-116
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we examine some topological properties of uniform spaces and their hyperspaces. We prove that a uniform space $(X,\mathscr{U})$ is uniformly precompact if and only if $ (\exp_{c}X, \exp_{c}\mathscr{U})$ is uniformly precompact. Also we prove that the uniform hyperspace $(\exp_{c}X, \exp_{c} \mathscr{U})$ preserves uniformly local compactness, uniform connection, uniform paracompactness, and uniform $R$-paracompactness.
Keywords:
uniform space, uniformity, uniformly connected space, uniformly paracompact space, uniformly $R$-paracompact space.
@article{INTO_2021_197_a12,
author = {R. B. Beshimov and D. T. Safarova},
title = {Uniform space and its hyperspace},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {108--116},
publisher = {mathdoc},
volume = {197},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a12/}
}
TY - JOUR AU - R. B. Beshimov AU - D. T. Safarova TI - Uniform space and its hyperspace JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 108 EP - 116 VL - 197 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_197_a12/ LA - ru ID - INTO_2021_197_a12 ER -
R. B. Beshimov; D. T. Safarova. Uniform space and its hyperspace. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 108-116. http://geodesic.mathdoc.fr/item/INTO_2021_197_a12/