Hewitt--Nachbin number of the space of thin complete linked systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 95-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the Hewitt–Nakhbin number $q$ of the space of thin complete linked systems $N^{*}X$ of a topological space $X$. We prove that the Hewitt–Nakhbin number $q$ of the space of thin complete systems $N^{*}X$ of a topological space $X$ does not exceed the density of the topological space $X$, i.e., $q(N^{*}X) \le d(X)$.
Keywords: density, Hewitt–Nachbin number, space of complete linked systems.
@article{INTO_2021_197_a10,
     author = {F. G. Mukhamadiev},
     title = {Hewitt--Nachbin number of the space of thin complete linked systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {95--100},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a10/}
}
TY  - JOUR
AU  - F. G. Mukhamadiev
TI  - Hewitt--Nachbin number of the space of thin complete linked systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 95
EP  - 100
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a10/
LA  - ru
ID  - INTO_2021_197_a10
ER  - 
%0 Journal Article
%A F. G. Mukhamadiev
%T Hewitt--Nachbin number of the space of thin complete linked systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 95-100
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a10/
%G ru
%F INTO_2021_197_a10
F. G. Mukhamadiev. Hewitt--Nachbin number of the space of thin complete linked systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 95-100. http://geodesic.mathdoc.fr/item/INTO_2021_197_a10/

[1] Arkhangelskii A. V., Topologicheskie prostranstva funktsii, MGU, M., 1989

[2] Ivanov A. V., Kardinalnoznachnye invarianty i funktory v kategorii bikompaktov, Diss. na soisk. uch. step. doktora fiz.-mat. nauk, Petrozavodsk, 1985

[3] Makhmud T., “O kardinalnykh invariantakh prostranstv stseplennykh sistem”, Vestn. MGU. Ser. 1. Mat. Mekh., 1995, no. 4, 14–19

[4] Mukhamadiev F. G., “Nekotorye kardinalnye svoistva $N_{\tau}^{\varphi}$-yadra prostranstva $X$”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 144 (2018), 117–121

[5] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, MGU, M., 2006

[6] Engelking R., Obschaya topologiya, Mir, M., 1986

[7] Beshimov R. B., Mukhamadiev F. G., “Some cardinal properties of complete linked systems with compact elements and absolute regular spaces”, Math. Aeterna., 3:8 (2013), 625–633 | Zbl

[8] Juhasz I., Cardinal Functions in Topology. Ten Years Later, Math. Centrum, Amsterdam, 1980 | Zbl