Voir la notice du chapitre de livre
@article{INTO_2021_197_a10,
author = {F. G. Mukhamadiev},
title = {Hewitt{\textendash}Nachbin number of the space of thin complete linked systems},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {95--100},
year = {2021},
volume = {197},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a10/}
}
TY - JOUR AU - F. G. Mukhamadiev TI - Hewitt–Nachbin number of the space of thin complete linked systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 95 EP - 100 VL - 197 UR - http://geodesic.mathdoc.fr/item/INTO_2021_197_a10/ LA - ru ID - INTO_2021_197_a10 ER -
%0 Journal Article %A F. G. Mukhamadiev %T Hewitt–Nachbin number of the space of thin complete linked systems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 95-100 %V 197 %U http://geodesic.mathdoc.fr/item/INTO_2021_197_a10/ %G ru %F INTO_2021_197_a10
F. G. Mukhamadiev. Hewitt–Nachbin number of the space of thin complete linked systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 95-100. http://geodesic.mathdoc.fr/item/INTO_2021_197_a10/
[1] Arkhangelskii A. V., Topologicheskie prostranstva funktsii, MGU, M., 1989
[2] Ivanov A. V., Kardinalnoznachnye invarianty i funktory v kategorii bikompaktov, Diss. na soisk. uch. step. doktora fiz.-mat. nauk, Petrozavodsk, 1985
[3] Makhmud T., “O kardinalnykh invariantakh prostranstv stseplennykh sistem”, Vestn. MGU. Ser. 1. Mat. Mekh., 1995, no. 4, 14–19
[4] Mukhamadiev F. G., “Nekotorye kardinalnye svoistva $N_{\tau}^{\varphi}$-yadra prostranstva $X$”, Itogi nauki tekhn. Sovr. mat. prilozh. Temat. obz., 144 (2018), 117–121
[5] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, MGU, M., 2006
[6] Engelking R., Obschaya topologiya, Mir, M., 1986
[7] Beshimov R. B., Mukhamadiev F. G., “Some cardinal properties of complete linked systems with compact elements and absolute regular spaces”, Math. Aeterna., 3:8 (2013), 625–633 | Zbl
[8] Juhasz I., Cardinal Functions in Topology. Ten Years Later, Math. Centrum, Amsterdam, 1980 | Zbl