Geometric properties of the location of subspaces of the space of probability measures
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 12-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

For pairs of subspaces of the space of probability measures defined in an infinite compact set $X$, we examine various geometric and topological properties such as everywhere density, convexity, boundedness, homotopy density, negligibility, and homeomorphism. Also, we establish conditions under which convex, everywhere dense subspaces of the space of probability measures $P(X)$ are boundary sets.
Keywords: probability measure, homotopically dense subset, homotopically negligible set.
@article{INTO_2021_197_a1,
     author = {Sh. A. Ayupov and T. F. Zhuraev},
     title = {Geometric properties of the location of subspaces of the space of probability measures},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {12--27},
     publisher = {mathdoc},
     volume = {197},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a1/}
}
TY  - JOUR
AU  - Sh. A. Ayupov
AU  - T. F. Zhuraev
TI  - Geometric properties of the location of subspaces of the space of probability measures
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 12
EP  - 27
VL  - 197
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_197_a1/
LA  - ru
ID  - INTO_2021_197_a1
ER  - 
%0 Journal Article
%A Sh. A. Ayupov
%A T. F. Zhuraev
%T Geometric properties of the location of subspaces of the space of probability measures
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 12-27
%V 197
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_197_a1/
%G ru
%F INTO_2021_197_a1
Sh. A. Ayupov; T. F. Zhuraev. Geometric properties of the location of subspaces of the space of probability measures. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 12-27. http://geodesic.mathdoc.fr/item/INTO_2021_197_a1/

[1] Borsuk K., Teoriya sheipov, Mir, M., 1976

[2] Zhuraev T. F., Nekotorye geometricheskie svoistva funktora veroyatnostnykh mer i ego podfunktorov, Diss. na soisk. uch. step. kand. fiz.-mat. nauk., MGU, M., 1989

[3] Zarichnyi M. M., “O svoistvakh normalnykh funktorov”, Tiraspolskii simpozium po obschei topologii ee prilozheniyam, Shtiintsa, Kishinev, 1985, 96–97

[4] Fedorchuk V. V., “Veroyatnostnye mery v topologii”, Usp. mat. nauk., 46:277 (1991), 41–80 | Zbl

[5] Schepin E. V., “Funktory i neschetnye stepeni kompaktov”, Usp. mat. nauk., 36:3 (1986), 3–62

[6] Banakh T., Radul T., Zarichnyi M., Absorbing Sets in Infinite-Dimensional Manifolds, VNTL, Lviv, 1996 | Zbl

[7] Bessaga G., Pelzunski A., Selected Topics in Infinite Dimensional Topology, P.W.N., Warszawa, 1975 | Zbl

[8] Curtis D. W., “Boundary sets of the Hilbert cube”, Topology Appl., 20:2 (1985), 201–221 | DOI | MR | Zbl

[9] Curtis D. W., Dobrovolski T., Mogilski J., “Some applications of the topological characterizations of the sigma-compact spaces $\ell _{2}^{f} $ and $\Sigma$”, Trans. Am. Math. Soc., 284:2 (1984), 837–846 | Zbl

[10] Dobrovolski T., “The compact $Z$-property in convex sets”, Topology Appl., 23:2 (1986), 163–172 | DOI | MR

[11] Mogilski J., “Characterizing the topology of infinite dimensional manifolds”, Proc. Am. Math. Soc., 92:1 (1984), 111–118 | MR | Zbl