Geometric properties of the location of subspaces of the space of probability measures
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 12-27
Voir la notice de l'article provenant de la source Math-Net.Ru
For pairs of subspaces of the space of probability measures defined in an infinite compact set $X$, we examine various geometric and topological properties such as everywhere density, convexity, boundedness, homotopy density, negligibility, and homeomorphism. Also, we establish conditions under which convex, everywhere dense subspaces of the space of probability measures $P(X)$ are boundary sets.
Keywords:
probability measure, homotopically dense subset, homotopically negligible set.
@article{INTO_2021_197_a1,
author = {Sh. A. Ayupov and T. F. Zhuraev},
title = {Geometric properties of the location of subspaces of the space of probability measures},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {12--27},
publisher = {mathdoc},
volume = {197},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_197_a1/}
}
TY - JOUR AU - Sh. A. Ayupov AU - T. F. Zhuraev TI - Geometric properties of the location of subspaces of the space of probability measures JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 12 EP - 27 VL - 197 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_197_a1/ LA - ru ID - INTO_2021_197_a1 ER -
%0 Journal Article %A Sh. A. Ayupov %A T. F. Zhuraev %T Geometric properties of the location of subspaces of the space of probability measures %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 12-27 %V 197 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_197_a1/ %G ru %F INTO_2021_197_a1
Sh. A. Ayupov; T. F. Zhuraev. Geometric properties of the location of subspaces of the space of probability measures. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Geometry and topology, Tome 197 (2021), pp. 12-27. http://geodesic.mathdoc.fr/item/INTO_2021_197_a1/