Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_196_a8, author = {A. A. Kosov and \`E. I. Semenov}, title = {On the existence of periodic solutions of a fourth-order nonlinear system of parabolic equations}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {98--104}, publisher = {mathdoc}, volume = {196}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a8/} }
TY - JOUR AU - A. A. Kosov AU - È. I. Semenov TI - On the existence of periodic solutions of a fourth-order nonlinear system of parabolic equations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 98 EP - 104 VL - 196 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_196_a8/ LA - ru ID - INTO_2021_196_a8 ER -
%0 Journal Article %A A. A. Kosov %A È. I. Semenov %T On the existence of periodic solutions of a fourth-order nonlinear system of parabolic equations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 98-104 %V 196 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_196_a8/ %G ru %F INTO_2021_196_a8
A. A. Kosov; È. I. Semenov. On the existence of periodic solutions of a fourth-order nonlinear system of parabolic equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 98-104. http://geodesic.mathdoc.fr/item/INTO_2021_196_a8/
[1] Galaktionov V. A., Posashkov S. S., “O novykh tochnykh resheniyakh parabolicheskikh uravnenii s kvadratichnymi nelineinostyami”, Zh. vychisl. mat. mat. fiz., 29:4 (1989), 497–506
[2] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988 | MR
[3] Zaitsev V. F., Polyanin A. D., Spravochnik po nelineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2002
[4] Kosov A. A., Semenov E. I., “O tochnykh mnogomernykh resheniyakh sistemy uravnenii reaktsii-diffuzii so stepennymi nelineinostyami”, Sib. mat. zh., 58:4 (2017), 796–812 | MR | Zbl
[5] Kosov A. A., Semenov E. I., “O tochnykh mnogomernykh resheniyakh odnoi nelineinoi sistemy uravnenii reaktsii-diffuzii”, Differ. uravn., 54:1 (2018), 108–122 | MR | Zbl
[6] Nefedov N. N., Nikulin E. I., “Suschestvovanie i asimptoticheskaya ustoichivost periodicheskikh dvumernykh kontrastnykh struktur v zadache so slaboi lineinoi advektsiei”, Mat. zametki., 106:5 (2019), 709–722 | MR
[7] Polyanin A. D., Zaitsev V. F., Zhurov A. I., Metody resheniya nelineinykh uravnenii matematicheskoi fiziki i mekhaniki, Fizmatlit, M., 2005
[8] Rudykh G. A., Semenov E. I., “Postroenie tochnykh reshenii mnogomernogo uravneniya nelineinoi teploprovodnosti”, Zh. vychisl. mat. mat. fiz., 33:8 (1993), 1228–1239 | MR | Zbl
[9] Rudykh G. A., Semenov E. I., “Tochnye neotritsatelnye resheniya mnogomernogo uravneniya nelineinoi diffuzii”, Sib. mat. zh., 39:5 (1998), 1131–1140 | MR | Zbl
[10] Rudykh G. A., Semenov E. I., “Neavtomodelnye resheniya mnogomernogo uravneniya nelineinoi diffuzii”, Mat. zametki., 67:2 (2000), 250–256 | Zbl
[11] Skubachevskii A. L., “Uravneniya Vlasova—Puassona dlya dvukhkomponentnoi plazmy v odnorodnom magnitnom pole”, Usp. mat. nauk., 69:2 (2014), 107–148 | MR | Zbl
[12] Titov S. S., Metod konechnomernykh kolets dlya resheniya nelineinykh uravnenii matematicheskoi fiziki, SGU, Saratov, 1988
[13] Galaktionov V. A., Svirshchevskii S. R., Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman, 2007 | MR | Zbl
[14] Kosov A. A., Semenov E. I., Tirskikh V. V., “On exact multidimensional solutions of a nonlinear system of first order partial differential equations”, Izv. Irkutsk. gos. un-ta. Ser. Mat., 28 (2019), 53–68 | MR | Zbl
[15] Markov Y., Rudykh G., Sidorov N., Sinitsyn A., Tolstonogov D., “Steady state solutions of the Vlasov–Maxwell system and their stability”, Acta Appl. Math., 28:3 (1992), 253–293 | DOI | MR | Zbl