Simplified three-dimensional mathematical models of hydrodynamics and passive mass transfer in calm channel flows
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 66-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we discuss problems of modeling calm channel flows of low turbidity on long, slightly curved watercourses. We present simplified mathematical models obtained by the method of a small parameter from the Reynolds equations for incompressible fluids closed by the Boussinesq hypothesis and the diffusion equations of decaying matter in a moving medium. Within the framework of this approach, we propose a classification of channel flows. In contrast to the common averaged equations, the models proposed take into account the spatial structure of the flow, which makes it possible to study the influence of the channel shape and some external factors (for example, wind effects) on the mixing and distribution of matter in the flow.
Keywords: mathematical model, channel flow, small parameter method.
Mots-clés : passive admixture, turbulence
@article{INTO_2021_196_a6,
     author = {K. A. Nadolin},
     title = {Simplified three-dimensional mathematical models of hydrodynamics and passive mass transfer in calm channel flows},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {66--89},
     publisher = {mathdoc},
     volume = {196},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a6/}
}
TY  - JOUR
AU  - K. A. Nadolin
TI  - Simplified three-dimensional mathematical models of hydrodynamics and passive mass transfer in calm channel flows
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 66
EP  - 89
VL  - 196
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_196_a6/
LA  - ru
ID  - INTO_2021_196_a6
ER  - 
%0 Journal Article
%A K. A. Nadolin
%T Simplified three-dimensional mathematical models of hydrodynamics and passive mass transfer in calm channel flows
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 66-89
%V 196
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_196_a6/
%G ru
%F INTO_2021_196_a6
K. A. Nadolin. Simplified three-dimensional mathematical models of hydrodynamics and passive mass transfer in calm channel flows. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 66-89. http://geodesic.mathdoc.fr/item/INTO_2021_196_a6/

[1] Aizatullin T. A., Shamardina I. P., “Matematicheskoe modelirovanie ekosistem kontinentalnykh vodotokov i vodoemov”, Itogi nauki i tekhniki. Obschaya ekologiya. Biotsenologiya. Gidrobiologiya. T. 5. Modelirovanie vodnykh ekosistem, AN SSSR. VINITI, M., 1980, 154–228

[2] Arguchintsev V. K., Arguchintseva A. V., “Chislennoe modelirovanie techenii i perenosa primesei v stratifitsirovannykh ozerakh”, Izv. Irkutsk. gos. un-ta. Ser. Mat., 1:1 (2007), 42–51 | MR

[3] Babayan A. V., Nadolin K. A., “O modelirovanii rasprostraneniya veschestva v ploskom statsionarnom potoke vyazkoi zhidkosti”, Vodnye resursy., 21:2 (2000), 184–191

[4] Babayan A. V., Nadolin K. A., “O modelirovanii teilorovskoi dispersii v trube peremennogo secheniya”, Izv. vuzov. Sev.-Kavkaz. region. Estestv. nauki., 2001, no. 3, 27–29

[5] Babayan A. V., Nadolin K. A., “Modelirovanie rasseyaniya veschestva v trekhmernom otkrytom statsionarnom potoke vyazkoi zhidkosti”, Izv. vuzov. Sev.-Kavkaz. region. Estestv. nauki., 2001, 23–25

[6] Vasilev O. F., “Matematicheskoe modelirovanie gidravlicheskikh i gidrologicheskikh protsessov v vodoemakh i vodotokakh.”, Vodnye resursy., 26:5 (1999), 600–611

[7] Velikanov M. A., Dinamika ruslovykh potokov. T. 1. Struktura potoka, GTTI, M., 1954

[8] Goncharova E. B., Nadolin K. A., Nasedkin A. V., “Raschet polya skorosti v statsionarnom ruslovom potoke na baze konechno-elementnogo kompleksa ANSYS/FLOTRAN”, XXIX Shkola-seminar «Matematicheskoe modelirovanie v problemakh ratsionalnogo prirodopolzovaniya» (pos. Abrau-Dyurso, 10–15 sentyabrya 2001 g.), Rostov-na-Donu, 2001, 35–37

[9] Elaeva M. S., Nadolin K. A., “Chislennoe issledovanie modeli statsionarnogo laminarnogo techeniya v melkom protyazhennom ruslovom potoke”, Mat. XIV Vseross. konf. «Teoreticheskie osnovy i konstruirovanie vychislitelnykh algoritmov dlya zadach matematicheskoi fiziki s primeneniem parallelnykh vychislenii» (pos. Dyurso, 4-10 sentyabrya 2006 g.), Izd. IPM RAN, M., 2006, 26

[10] Zhilyaev I. V., Redutsirovannye modeli gidrodinamiki i massoperenosa v ruslovykh potokakh, diss. na soisk. uch. step. kand. fiz.-mat. nauk, Rostov-na-Donu, 2018

[11] Galkin L. M., Madzharova S. A., “Metod ponizheniya razmernosti modelei rechnykh ekosistem”, Vodnye resursy., 20:3 (1993), 340–344

[12] Gidrologiya sushi, VINITI AN SSSR, M., 1987

[13] Kartvelishvili N. A., Potoki v nedeformiruemykh ruslakh, Gidrometeoizdat, L., 1973

[14] Karaushev A. V., Meerovich A. V., “K voprosu modelirovaniya rasprostraneniya vzveshennykh veschestv v vodoeme”, Tr. Gos. gidrolog. in-ta., 319 (1986), 36–43

[15] Klaven A. B., Kopaliani Z. D., Eksperimentalnye issledovaniya i gidravlicheskoe modelirovanie rechnykh potokov i ruslovogo protsessa, Nestor-Istoriya, SPb., 2011

[16] Landau L. D., Lifshits E. M., Gidrodinamika, Nauka, M., 1986 | MR

[17] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Drofa, M., 2003

[18] Lyakhter V. M., Prudovskii A. M., Gidravlicheskoe modelirovanie, Energoatomizdat, M., 1984 | MR

[19] Monin A. S., Yaglom A. M., Statisticheskaya gidromekhanika, Gidrometeoizdat, SPb., 1992

[20] Nadolin K. A., “Modelirovanie peremeshivaniya i perenosa veschestva v ruslovykh potokakh”, Ekolog. vest. nauch. tsentrov ChEC., 2004, 50–71

[21] Nadolin K. A., “O chislennom reshenii nachalno-kraevoi zadachi dlya odnogo parabolicheskogo v shirokom smysle uravneniya”, Izv. vuzov. Elektromekhanika., 2007, 16–25

[22] Nadolin K. A., “Chislennoe modelirovanie passivnogo perenosa veschestva v sverkhmelkom ruslovom potoke”, Mat. XI Mezhdunar. konf. «Sovremennye problemy mekhaniki sploshnoi sredy» (Rostov-na-Donu, 26-29 noyabrya 2007 g.), Rostov-na-Donu, 2008, 133–138

[23] Nadolin K. A., “Ob odnom podkhode k modelirovaniyu passivnogo massoperenosa v ruslovykh potokakh”, Mat. model., 21:2 (2009), 14–28 | MR | Zbl

[24] Nadolin K. A., Zhilyaev I. V., “Redutsirovannaya 3D model gidrodinamiki melkogo protyazhennogo i slabo iskrivlennogo vodotoka”, Vodnye resursy., 44:2 (2017), 158–167

[25] Pukhnachev V. V., Dvizhenie vyazkoi zhidkosti so svobodnymi granitsami, NGU, Novosibirsk, 1989

[26] Rodi V., “Metody rascheta turbulentnykh techenii”, Modeli turbulentnosti okruzhayuschei sredy, Mir, M., 1984, 227-322

[27] Aris R., “On the dispersion of solute in a fluid flowing through a tube”, Proc. Roy. Soc. London A., 235 (1956), 67–77 | DOI | MR

[28] Babayan A. V., Nadolin K. A., “Simulation of the admixture spreading in a steady 2D lengthy stream of a viscous fluid”, Global Nest Int. J., 2:1 (2000), 91–97

[29] Babayan A. V., Nadolin K. A., “2D Numerical Modeling of the contaminant spreading in a steady lengthy river flow”, Proc. XIII Int. Conf. “Computer Methods in Water Research” (Calgary (Alberta), Canada, June 25-29, 2000.), Balkema, Rotterdam, 2000, 1009–1014

[30] Knight D. W., “River hydraulics. A view from midstream”, J. Hydr. Res., 51:1 (2013), 2–18 | DOI

[31] Luk G. K. Y., Lau Y. L. Watt W. E., “Two-dimensional mixing in rivers with unsteady pollutant source”, J. Env. Eng., 116 (1990), 125–143 | DOI

[32] Stansby P. K., “Coastal hydrodynamics: Present and future”, J. Hydr. Res., 51:4 (2013), 341-350 | DOI | MR

[33] Taylor G. I., “Dispersion of soluble matter in solvent flowing slowly through a tube”, Proc. Roy. Soc. London A., 219 (1953), 186–203 | DOI

[34] Taylor G. I., “The dispersion of matter in turbulent flow through a pipe”, Proc. Roy. Soc. London A., 223 (1954), 446–468 | DOI | MR

[35] Taylor G. I., “Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion”, Proc. Roy. Soc. London A., 225 (1954), 473–477 | DOI