Investigation of Beltrami fields by methods of integral geometry
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 3-14
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we propose a tomographic method for studying linear Beltrami fields in a bounded domain of space based on the expansion of vector fields and their ray transforms by basic vector functions. In addition, we develop a numerical algorithm and present the results of numerical simulation.
Keywords:
inverse problem, Beltrami field, ray transform, vector spherical harmonic.
@article{INTO_2021_196_a0,
author = {A. L. Balandin},
title = {Investigation of {Beltrami} fields by methods of integral geometry},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {3--14},
publisher = {mathdoc},
volume = {196},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a0/}
}
TY - JOUR AU - A. L. Balandin TI - Investigation of Beltrami fields by methods of integral geometry JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 3 EP - 14 VL - 196 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_196_a0/ LA - ru ID - INTO_2021_196_a0 ER -
%0 Journal Article %A A. L. Balandin %T Investigation of Beltrami fields by methods of integral geometry %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 3-14 %V 196 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_196_a0/ %G ru %F INTO_2021_196_a0
A. L. Balandin. Investigation of Beltrami fields by methods of integral geometry. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 3-14. http://geodesic.mathdoc.fr/item/INTO_2021_196_a0/