Investigation of Beltrami fields by methods of integral geometry
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a tomographic method for studying linear Beltrami fields in a bounded domain of space based on the expansion of vector fields and their ray transforms by basic vector functions. In addition, we develop a numerical algorithm and present the results of numerical simulation.
Keywords: inverse problem, Beltrami field, ray transform, vector spherical harmonic.
@article{INTO_2021_196_a0,
     author = {A. L. Balandin},
     title = {Investigation of {Beltrami} fields by methods of integral geometry},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {196},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_196_a0/}
}
TY  - JOUR
AU  - A. L. Balandin
TI  - Investigation of Beltrami fields by methods of integral geometry
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 3
EP  - 14
VL  - 196
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_196_a0/
LA  - ru
ID  - INTO_2021_196_a0
ER  - 
%0 Journal Article
%A A. L. Balandin
%T Investigation of Beltrami fields by methods of integral geometry
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 3-14
%V 196
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_196_a0/
%G ru
%F INTO_2021_196_a0
A. L. Balandin. Investigation of Beltrami fields by methods of integral geometry. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 196 (2021), pp. 3-14. http://geodesic.mathdoc.fr/item/INTO_2021_196_a0/