Remarks on the Paley--Wiener--Schwarz theorem for the Fourier--Bessel transform
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 81-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss consequences of the Paley–Wiener–Schwarz theorem for the Fourier–Bessel transform, namely, assertions on the existence of finite solutions of singular differential equations, on the accompanying criterion for singular differential operators, and on sufficient conditions for the compactness of the support of a distribution.
Keywords: finite distribution, Paley–Wiener–Schwarz theorem
Mots-clés : Fourier–Bessel transform.
@article{INTO_2021_195_a9,
     author = {M. V. Polovinkina and I. P. Polovinkin},
     title = {Remarks on the {Paley--Wiener--Schwarz} theorem for the {Fourier--Bessel} transform},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {81--87},
     publisher = {mathdoc},
     volume = {195},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a9/}
}
TY  - JOUR
AU  - M. V. Polovinkina
AU  - I. P. Polovinkin
TI  - Remarks on the Paley--Wiener--Schwarz theorem for the Fourier--Bessel transform
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 81
EP  - 87
VL  - 195
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_195_a9/
LA  - ru
ID  - INTO_2021_195_a9
ER  - 
%0 Journal Article
%A M. V. Polovinkina
%A I. P. Polovinkin
%T Remarks on the Paley--Wiener--Schwarz theorem for the Fourier--Bessel transform
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 81-87
%V 195
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_195_a9/
%G ru
%F INTO_2021_195_a9
M. V. Polovinkina; I. P. Polovinkin. Remarks on the Paley--Wiener--Schwarz theorem for the Fourier--Bessel transform. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 81-87. http://geodesic.mathdoc.fr/item/INTO_2021_195_a9/

[1] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, GIFML, M., 1958

[2] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, GIFML, M., 1958 | MR

[3] Zhitomirskii Ya. I., “Zadacha Koshi dlya sistem lineinykh uravnenii v chastnykh proizvodnykh s differentsialnymi operatorami tipa Besselya”, Mat. sb., 36 (78):2 (1955), 299–-310

[4] Katrakhov V. V., Sitnik S. M., “Metod preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Sovr. mat. Fundam. napr., 64:2 (2018), 211–426 | MR

[5] Kipriyanov I. A., “Preobrazovanie Fure–Besselya i teoremy vlozheniya dlya vesovykh klassov”, Tr. Mat. in-ta im. V. A. Steklova RAN., 89 (1967), 130–213 | Zbl

[6] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997

[7] Kipriyanov I. A., Zasorin Yu. V., “O fundamentalnom reshenii volnovogo uravneniya s mnogimi osobennostyami”, Differ. uravn., 28:3 (1992), 452–462 | MR | Zbl

[8] Kipriyanov I. A., Kulikov A. A., “Teorema Peli—Vinera—Shvartsa dlya preobrazovaniya Fure–Besselya”, Dokl. AN SSSR., 298:1 (1988), 13–17 | Zbl

[9] Levitan B. M., “Razlozhenie v ryady i integraly Fure po funktsiyam Besselya”, Usp. mat nauk., 6:2 (1951), 102–143 | MR | Zbl

[10] Lyakhov L. N., $B$-Gipersingulyarnye integraly i ikh prilozheniya k opisaniyu funktsionalnykh klassov Kipriyanova i k integralnym uravneniyam s $B$-potentsialnymi yadrami, LGPU, Lipetsk, 2007

[11] Lyakhov L. N., Polovinkin I. P., Shishkina E. L., “K teoremam o srednem dlya vyrozhdayuschikhsya differentsialnykh uravnenii”, Vestn. f-ta prikl. mat. inform. mekh., 2014, no. 9, 125–133

[12] Lyakhov L. N., Polovinkina M. V., “Odno svoistvo soprovozhdayuschikh raspredelenii singulyarnykh differentsialnykh operatorov”, Vestn. f-ta prikl. mat. inform. mekh., 2015, no. 10, 143–150

[13] Meshkov V. Z., Polovinkin I. P., “O poluchenii novykh formul srednego znacheniya dlya lineinykh differentsialnykh uravnenii s postoyannymi koeffitsientami”, Differ. uravn., 47:12 (2011), 1724–1731 | MR | Zbl

[14] Meshkov V. Z., Polovinkin I. P., “Priznak kompaktnosti nositelya obobschennoi funktsii v terminakh preobrazovaniya Fure—Laplasa”, Mat. zametki., 96:1 (2014), 83–-87 | Zbl

[15] Sitnik S. M., Shishkina E. L., Metod operatorov preobrazovaniya dlya differentsialnykh uravnenii s operatorami Besselya, Fizmatlit, M., 2019

[16] Titchmarsh E. K., Teoriya funktsii, Nauka, M., 1980

[17] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, Mir, M., 1986

[18] Zalcman L., “Mean values and differential equations”, Isr. J. Math., 14 (1973), 339–352 | DOI | MR | Zbl