On a relation between real and holomorphic functions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 68-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study $\lambda$-holomorphic functions, which generalize holomorphic functions to the case of arbitrary complex exponent $\lambda$. We establish a connection between such functions and real-valued quadratic forms and prove that for $\lambda\ne\mu$, $\lambda\ne\overline{\mu}$ there are $\lambda$- and $\mu$-holomorphic functions whose imaginary parts coincide identically; such functions are polynomials of degree no greater tan two.
Keywords: partial derivative, $\lambda$-holomorphic function, system of algebraic equations, linear substitution, quadratic form.
Mots-clés : Cauchy–Riemann conditions
@article{INTO_2021_195_a7,
     author = {V. G. Nikolaev},
     title = {On a relation between real and holomorphic functions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {68--74},
     publisher = {mathdoc},
     volume = {195},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a7/}
}
TY  - JOUR
AU  - V. G. Nikolaev
TI  - On a relation between real and holomorphic functions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 68
EP  - 74
VL  - 195
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_195_a7/
LA  - ru
ID  - INTO_2021_195_a7
ER  - 
%0 Journal Article
%A V. G. Nikolaev
%T On a relation between real and holomorphic functions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 68-74
%V 195
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_195_a7/
%G ru
%F INTO_2021_195_a7
V. G. Nikolaev. On a relation between real and holomorphic functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 68-74. http://geodesic.mathdoc.fr/item/INTO_2021_195_a7/

[1] Vasilev V. B., Nikolaev V. G., “O zadache Shvartsa dlya ellipticheskikh sistem pervogo poryadka na ploskosti”, Differ. uravn., 53:10 (2017), 1351–1361 | Zbl

[2] Nikolaev V. G., Soldatov A. P., “O reshenii zadachi Shvartsa dlya $J$-analiticheskikh funktsii v oblastyakh, ogranichennykh konturom Lyapunova”, Differ. uravn., 51:7 (2015), 965–969 | Zbl

[3] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984 | MR

[4] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnogo peremennogo, M., 1999 | MR

[5] Soldatov A. P., Funktsii, analiticheskie po Duglisu, Novgorod, 1995

[6] Soldatov A. P., “The Schwarz problem for Douglis analytic functions”, J. Math. Sci., 173:2 (2011), 221–224 | DOI | MR | Zbl