Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_195_a7, author = {V. G. Nikolaev}, title = {On a relation between real and holomorphic functions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {68--74}, publisher = {mathdoc}, volume = {195}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a7/} }
TY - JOUR AU - V. G. Nikolaev TI - On a relation between real and holomorphic functions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 68 EP - 74 VL - 195 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_195_a7/ LA - ru ID - INTO_2021_195_a7 ER -
V. G. Nikolaev. On a relation between real and holomorphic functions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 68-74. http://geodesic.mathdoc.fr/item/INTO_2021_195_a7/
[1] Vasilev V. B., Nikolaev V. G., “O zadache Shvartsa dlya ellipticheskikh sistem pervogo poryadka na ploskosti”, Differ. uravn., 53:10 (2017), 1351–1361 | Zbl
[2] Nikolaev V. G., Soldatov A. P., “O reshenii zadachi Shvartsa dlya $J$-analiticheskikh funktsii v oblastyakh, ogranichennykh konturom Lyapunova”, Differ. uravn., 51:7 (2015), 965–969 | Zbl
[3] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1984 | MR
[4] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnogo peremennogo, M., 1999 | MR
[5] Soldatov A. P., Funktsii, analiticheskie po Duglisu, Novgorod, 1995
[6] Soldatov A. P., “The Schwarz problem for Douglis analytic functions”, J. Math. Sci., 173:2 (2011), 221–224 | DOI | MR | Zbl