Green's function of an interior boundary-value problem for a fractional ordinary differential equation with constant coefficients
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 25-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an interior boundary-value problem for a linear, ordinary differential equation with an operator of fractional, discretely distributed differentiation. The boundary conditions connect the values of the unknown solution at the ends of the interval with the values at interior points. Green's function is constructed and the theorem of the existence and uniqueness of a solution is proved.
Keywords: interior boundary value problem, Green's function, Caputo derivative, fractional ordinary differential equation, operator of discretely distributed differentiation.
@article{INTO_2021_195_a2,
     author = {L. Kh. Gadzova},
     title = {Green's function of an interior boundary-value problem for a fractional ordinary differential equation with constant coefficients},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {25--34},
     publisher = {mathdoc},
     volume = {195},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a2/}
}
TY  - JOUR
AU  - L. Kh. Gadzova
TI  - Green's function of an interior boundary-value problem for a fractional ordinary differential equation with constant coefficients
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 25
EP  - 34
VL  - 195
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_195_a2/
LA  - ru
ID  - INTO_2021_195_a2
ER  - 
%0 Journal Article
%A L. Kh. Gadzova
%T Green's function of an interior boundary-value problem for a fractional ordinary differential equation with constant coefficients
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 25-34
%V 195
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_195_a2/
%G ru
%F INTO_2021_195_a2
L. Kh. Gadzova. Green's function of an interior boundary-value problem for a fractional ordinary differential equation with constant coefficients. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 25-34. http://geodesic.mathdoc.fr/item/INTO_2021_195_a2/

[1] Bogatyreva F. T., “Nelokalnaya kraevaya zadacha dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka s operatorom Dzhrbashyana—Nersesyana”, Dokl. Adyg. (Cherkes.) Mezhdunar. Akad. nauk., 16:2 (2014), 28–33 | MR

[2] Gadzova L. Kh., “Obobschennaya zadacha Dirikhle dlya lineinogo differentsialnogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Differ. uravn., 50:1 (2014), 121–125 | MR | Zbl

[3] Gadzova L. Kh., “Zadachi Dirikhle i Neimana dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Differ. uravn., 51:12 (2015), 1580–1586 | MR | Zbl

[4] Gadzova L. Kh., “Zadacha Neimana dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Vladikavkaz. mat. zh., 18:3 (2016), 22–30 | MR | Zbl

[5] Gadzova L. Kh., “Ob asimptotike fundamentalnogo resheniya obyknovennogo differentsialnogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Vestn. KRAUNTs. Fiz.-mat. nauki., 13:2 (2016), 7–11 | MR | Zbl

[6] Gadzova L. Kh., “Kraevaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya s operatorom drobnogo diskretno raspredelennogo differentsirovaniya”, Differ. uravn., 54:2 (2018), 180–186 | MR | Zbl

[7] Gadzova L. Kh., “Kraevaya zadacha so smescheniem dlya lineinogo obyknovennogo differentsialnogo uravneniya s operatorom diskretno raspredelennogo differentsirovaniya”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 149 (2018), 25–30 | MR

[8] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[9] Dzhrbashyan M. M., “Kraevaya zadacha dlya differentsialnogo operatora drobnogo poryadka tipa Shturma—Liuvillya”, Izv. AN Arm. SSR. Mat., 5:2 (1970), 71–96 | Zbl

[10] Dzhrbashyan M. M., Nersesyan A. B., “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN Arm. SSR. Mat., 3:1 (1968), 3–28 | MR

[11] Ilin V. A., Moiseev E. I., “Nelokalnaya kraevaya zadacha pervogo roda dlya operatora Shturma—Liuvillya v differentsialnoi i raznostnoi traktovkakh”, Differ. uravn., 23:7 (1987), 1198–1207 | MR

[12] Kilbas A. A., Teoriya i prilozheniya differentsialnykh uravnenii drobnogo poryadka, Samara, 2009

[13] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[14] Novozhenova O. G., Biografiya i nauchnye trudy A. N. Gerasimova. O lineinykh operatorakh, uprugo-vyazkosti, elevteroze i drobnykh proizvodnykh, Pero, M., 2018

[15] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[16] Pskhu A. V., “Nachalnaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Mat. sb., 202:4 (2011), 111–122 | MR | Zbl

[17] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[18] Uchaikin V. V., Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[19] Barrett J. H., “Differential Equations of Non-Integer Order”, Can. J. Math., 6:4 (1954), 529–541 | DOI | MR | Zbl

[20] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland, Amsterdam, 2006 | MR | Zbl

[21] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993 | MR | Zbl

[22] Oldham K. B., Spanier J., The Fractional Calculus, Academic Press, New York–London, 1974 | MR | Zbl

[23] Öztürk I., “On the theory of fractional differential equation”, Repts. Adyghe (Circassian) Int. Acad. Sci., 3:2 (1998), 35–39

[24] Podlubny I., Fractional Differential Equations, Academic Press, 1998 | MR

[25] Wright E. M., “On the coefficients of power series having exponential singularities”, J. London Math. Soc., 8:29 (1933), 71–79 | DOI | MR | Zbl