Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_195_a2, author = {L. Kh. Gadzova}, title = {Green's function of an interior boundary-value problem for a fractional ordinary differential equation with constant coefficients}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {25--34}, publisher = {mathdoc}, volume = {195}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a2/} }
TY - JOUR AU - L. Kh. Gadzova TI - Green's function of an interior boundary-value problem for a fractional ordinary differential equation with constant coefficients JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 25 EP - 34 VL - 195 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_195_a2/ LA - ru ID - INTO_2021_195_a2 ER -
%0 Journal Article %A L. Kh. Gadzova %T Green's function of an interior boundary-value problem for a fractional ordinary differential equation with constant coefficients %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 25-34 %V 195 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_195_a2/ %G ru %F INTO_2021_195_a2
L. Kh. Gadzova. Green's function of an interior boundary-value problem for a fractional ordinary differential equation with constant coefficients. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 25-34. http://geodesic.mathdoc.fr/item/INTO_2021_195_a2/