Examples of integrable dynamical systems of arbitrary odd order with dissipation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 142-156
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we prove the integrability of some classes of odd-order homogeneous (in some variables) dynamical systems that admit extracting a system on the tangent bundle to a smooth manifold.
Keywords:
dynamical system, nonconservative force field, integrability, transcendental first integral.
@article{INTO_2021_195_a16,
author = {M. V. Shamolin},
title = {Examples of integrable dynamical systems of arbitrary odd order with dissipation},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {142--156},
publisher = {mathdoc},
volume = {195},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a16/}
}
TY - JOUR AU - M. V. Shamolin TI - Examples of integrable dynamical systems of arbitrary odd order with dissipation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 142 EP - 156 VL - 195 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_195_a16/ LA - ru ID - INTO_2021_195_a16 ER -
%0 Journal Article %A M. V. Shamolin %T Examples of integrable dynamical systems of arbitrary odd order with dissipation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 142-156 %V 195 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_195_a16/ %G ru %F INTO_2021_195_a16
M. V. Shamolin. Examples of integrable dynamical systems of arbitrary odd order with dissipation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 142-156. http://geodesic.mathdoc.fr/item/INTO_2021_195_a16/