Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_195_a15, author = {E. Chaplygina}, title = {Solution of a second-kind integro-functional {Abel} equation}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {139--141}, publisher = {mathdoc}, volume = {195}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a15/} }
TY - JOUR AU - E. Chaplygina TI - Solution of a second-kind integro-functional Abel equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 139 EP - 141 VL - 195 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_195_a15/ LA - ru ID - INTO_2021_195_a15 ER -
%0 Journal Article %A E. Chaplygina %T Solution of a second-kind integro-functional Abel equation %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 139-141 %V 195 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_195_a15/ %G ru %F INTO_2021_195_a15
E. Chaplygina. Solution of a second-kind integro-functional Abel equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 139-141. http://geodesic.mathdoc.fr/item/INTO_2021_195_a15/
[1] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR
[2] Polyanin A. D., Manzhirov A. V., Spravochnik po integralnym uravneniyam, Fizmatlit, M., 2003