Solution of a second-kind integro-functional Abel equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 139-141
Cet article a éte moissonné depuis la source Math-Net.Ru
We examine an integro-functional equation with a weakly polar integral operator with non-Carleman shifts of retarded and advancing type. The unique solvability of the problem is proved.
Mots-clés :
Abel equation, matrix equation
Keywords: mutually inverse diffeomorphisms.
Keywords: mutually inverse diffeomorphisms.
@article{INTO_2021_195_a15,
author = {E. Chaplygina},
title = {Solution of a second-kind integro-functional {Abel} equation},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {139--141},
year = {2021},
volume = {195},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a15/}
}
TY - JOUR AU - E. Chaplygina TI - Solution of a second-kind integro-functional Abel equation JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 139 EP - 141 VL - 195 UR - http://geodesic.mathdoc.fr/item/INTO_2021_195_a15/ LA - ru ID - INTO_2021_195_a15 ER -
E. Chaplygina. Solution of a second-kind integro-functional Abel equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 139-141. http://geodesic.mathdoc.fr/item/INTO_2021_195_a15/
[1] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR
[2] Polyanin A. D., Manzhirov A. V., Spravochnik po integralnym uravneniyam, Fizmatlit, M., 2003