Solution of a second-kind integro-functional Abel equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 139-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine an integro-functional equation with a weakly polar integral operator with non-Carleman shifts of retarded and advancing type. The unique solvability of the problem is proved.
Mots-clés : Abel equation, matrix equation
Keywords: mutually inverse diffeomorphisms.
@article{INTO_2021_195_a15,
     author = {E. Chaplygina},
     title = {Solution of a second-kind integro-functional {Abel} equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {139--141},
     publisher = {mathdoc},
     volume = {195},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a15/}
}
TY  - JOUR
AU  - E. Chaplygina
TI  - Solution of a second-kind integro-functional Abel equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 139
EP  - 141
VL  - 195
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_195_a15/
LA  - ru
ID  - INTO_2021_195_a15
ER  - 
%0 Journal Article
%A E. Chaplygina
%T Solution of a second-kind integro-functional Abel equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 139-141
%V 195
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_195_a15/
%G ru
%F INTO_2021_195_a15
E. Chaplygina. Solution of a second-kind integro-functional Abel equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 139-141. http://geodesic.mathdoc.fr/item/INTO_2021_195_a15/

[1] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976 | MR

[2] Polyanin A. D., Manzhirov A. V., Spravochnik po integralnym uravneniyam, Fizmatlit, M., 2003