Singular points of the integral representation of the Mittag-Leffler function
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 97-107
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we examine singular points of an integral representation of the two-parameter Mittag-Leffler function $E_{\rho,\mu}(z)$. We establish that this integral representation possesses two singular points: the first-order pole $\zeta=1$ and the point $\zeta=0$, which is either a pole, or a branch point, or a regular point depending on the value of the parameters $\rho$ and $\mu$. For some values of the parameters $\rho$ and $\mu$, the integral in the representation considered can be calculated by methods of the theory of residues and hence the function $E_{\rho, \mu}(z)$ can be expressed through elementary functions.
Keywords:
Mittag-Leffler function, integral representation.
@article{INTO_2021_195_a11,
author = {V. V. Saenko},
title = {Singular points of the integral representation of the {Mittag-Leffler} function},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {97--107},
publisher = {mathdoc},
volume = {195},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a11/}
}
TY - JOUR AU - V. V. Saenko TI - Singular points of the integral representation of the Mittag-Leffler function JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 97 EP - 107 VL - 195 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_195_a11/ LA - ru ID - INTO_2021_195_a11 ER -
%0 Journal Article %A V. V. Saenko %T Singular points of the integral representation of the Mittag-Leffler function %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 97-107 %V 195 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_195_a11/ %G ru %F INTO_2021_195_a11
V. V. Saenko. Singular points of the integral representation of the Mittag-Leffler function. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 97-107. http://geodesic.mathdoc.fr/item/INTO_2021_195_a11/