Singular points of the integral representation of the Mittag-Leffler function
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 97-107

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine singular points of an integral representation of the two-parameter Mittag-Leffler function $E_{\rho,\mu}(z)$. We establish that this integral representation possesses two singular points: the first-order pole $\zeta=1$ and the point $\zeta=0$, which is either a pole, or a branch point, or a regular point depending on the value of the parameters $\rho$ and $\mu$. For some values of the parameters $\rho$ and $\mu$, the integral in the representation considered can be calculated by methods of the theory of residues and hence the function $E_{\rho, \mu}(z)$ can be expressed through elementary functions.
Keywords: Mittag-Leffler function, integral representation.
@article{INTO_2021_195_a11,
     author = {V. V. Saenko},
     title = {Singular points of the integral representation of the {Mittag-Leffler} function},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {97--107},
     publisher = {mathdoc},
     volume = {195},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_195_a11/}
}
TY  - JOUR
AU  - V. V. Saenko
TI  - Singular points of the integral representation of the Mittag-Leffler function
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 97
EP  - 107
VL  - 195
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_195_a11/
LA  - ru
ID  - INTO_2021_195_a11
ER  - 
%0 Journal Article
%A V. V. Saenko
%T Singular points of the integral representation of the Mittag-Leffler function
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 97-107
%V 195
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_195_a11/
%G ru
%F INTO_2021_195_a11
V. V. Saenko. Singular points of the integral representation of the Mittag-Leffler function. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19. Belgorod, August 20–24, 2019, Tome 195 (2021), pp. 97-107. http://geodesic.mathdoc.fr/item/INTO_2021_195_a11/