Twists on flat knot diagrams
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 71-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of recognizing knots as smooth embeddings of a circle into $\mathbb{R}^3$ given by their planar diagrams. The concept of a twist on a planar diagram is introduced and a method for encoding twists and nodes by T-graphs is proposed. We show that in some situations this approach allows one to recognize a trivial knot.
Keywords: knot, recognition of a trivial knot, twist, T-graph.
@article{INTO_2021_194_a6,
     author = {O. N. Biryukov},
     title = {Twists on flat knot diagrams},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {71--77},
     publisher = {mathdoc},
     volume = {194},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a6/}
}
TY  - JOUR
AU  - O. N. Biryukov
TI  - Twists on flat knot diagrams
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 71
EP  - 77
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a6/
LA  - ru
ID  - INTO_2021_194_a6
ER  - 
%0 Journal Article
%A O. N. Biryukov
%T Twists on flat knot diagrams
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 71-77
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a6/
%G ru
%F INTO_2021_194_a6
O. N. Biryukov. Twists on flat knot diagrams. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 71-77. http://geodesic.mathdoc.fr/item/INTO_2021_194_a6/

[1] Dynnikov I. A., “Algoritmy raspoznavaniya v teorii uzlov”, Usp. mat. nauk., 58:6 (354) (2003), 45–92 | MR | Zbl

[2] Goeritz L., “Bemerkungen zur Knotentheorie”, Abh. Math. Sem. Univ. Hamburg., 10 (1934), 201–210 | DOI | MR