Method of stochastic multivalent guiding functions in a periodic problem for stochastic differential inclusions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 38-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the concept of a stochastic multivalent guiding function is introduced. The new method based of the concept introduced allows one to establish a sufficient criterion for the existence of periodic solutions of stochastic differential inclusions in finite-dimensional spaces.
Keywords: stochastic differential inclusion, stochastic multivalent guiding function, stochastic periodic solution.
@article{INTO_2021_194_a3,
     author = {Yu. E. Bezmelnitsyna and S. V. Kornev and V. V. Obukhovskii},
     title = {Method of stochastic multivalent guiding functions in a periodic problem for stochastic differential inclusions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {38--45},
     publisher = {mathdoc},
     volume = {194},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a3/}
}
TY  - JOUR
AU  - Yu. E. Bezmelnitsyna
AU  - S. V. Kornev
AU  - V. V. Obukhovskii
TI  - Method of stochastic multivalent guiding functions in a periodic problem for stochastic differential inclusions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 38
EP  - 45
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a3/
LA  - ru
ID  - INTO_2021_194_a3
ER  - 
%0 Journal Article
%A Yu. E. Bezmelnitsyna
%A S. V. Kornev
%A V. V. Obukhovskii
%T Method of stochastic multivalent guiding functions in a periodic problem for stochastic differential inclusions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 38-45
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a3/
%G ru
%F INTO_2021_194_a3
Yu. E. Bezmelnitsyna; S. V. Kornev; V. V. Obukhovskii. Method of stochastic multivalent guiding functions in a periodic problem for stochastic differential inclusions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 38-45. http://geodesic.mathdoc.fr/item/INTO_2021_194_a3/

[1] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR, 169 (1985), 194–252 | MR | Zbl

[2] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Librikom, M., 2011

[3] Kornev S. V., “O metode mnogolistnykh napravlyayuschikh funktsii v zadache o periodicheskikh resheniyakh differentsialnykh vklyuchenii”, Avtomat. telemekh., 3 (2003), 72–83 | Zbl

[4] Kornev S. V., Obukhovskii V. V., “O negladkikh mnogolistnykh napravlyayuschikh funktsiyakh”, Differ. uravn., 39:11 (2003), 1497–1502 | MR | Zbl

[5] Kornev S. V., Obukhovskii V. V., “Negladkie napravlyayuschie funktsii v zadachakh o vynuzhdennykh kolebaniyakh”, Avtomat. telemekh., 1 (2007), 3–12

[6] Kornev S. V., “Mnogolistnye napravlyayuschie funktsii v zadache o suschestvovanii periodicheskikh reshenii differentsialnykh vklyuchenii s nevypukloi pravoi chastyu”, Izv. vuzov. Mat., 11 (2016), 14–26 | Zbl

[7] Krasnoselskii M. A., Perov A. I., “Ob odnom printsipe suschestvovaniya ogranichennykh, periodicheskikh i pochti-periodicheskikh reshenii u sistem obyknovennykh differentsialnykh uravnenii”, Dokl. AN SSSR., 123:2 (1958), 235–238 | Zbl

[8] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | MR

[9] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR

[10] Andres J., Górniewicz L., “Random topological degree and random differential inclusions”, Topol. Meth. Nonlin. Anal., 40 (2012), 337–358 | MR | Zbl

[11] Arutyunov A. V., Obukhovskii V., Convex and Set-Valued Analysis. Selected Topics, de Gruyter, Berlin–Boston, 2017 | MR | Zbl

[12] De Blasi F. S., Górniewicz L., Pianigiani G., “Topological degree and periodic solutions of differential inclusions”, Nonlin. Anal., 37 (1999), 217–245 | DOI | MR | Zbl

[13] Castaing C., Valadier M., Convex Analysis and Measurable Multifunctions, Springer-Verlag, New York–Berlin, 1977 | MR | Zbl

[14] Deimling K., Multivalued Differential Equations, de Gruyter, Berlin–New York, 1992 | MR | Zbl

[15] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Berlin, 2006 | MR | Zbl

[16] Górniewicz L., Plaskacz S., “Periodic solutions of differential inclusions in $\mathbb{R}^{n}$”, Boll. UMI., 7-A (1993), 409–420 | MR

[17] Fonda A., “Guiding functions and periodic solutions to functional differential equations”, Proc. Am. Math. Soc., 99:1 (1987), 79–85 | MR | Zbl

[18] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter, Berlin–New York, 2001 | MR | Zbl

[19] Kisielewicz M., Differential inclusions and optimal control, PWN Polish Scientific Publishers, Dordrecht, 1991 | MR | Zbl

[20] Kornev S., Obukhovskii V., Zecca P., “On multivalent guiding functions method in the periodic problem for random differential equations”, J. Dynam. Differ. Equations., 31:2 (2019), 1017–1028 | DOI | MR | Zbl

[21] Mawhin J., “Periodic solutions of ninlinear functional differential equations”, J. Differ. Equations., 10 (1971), 240–261 | DOI | MR | Zbl

[22] Mawhin J., Ward James R. Jr., “Guiding-like functions for periodic or bounded solutions of ordinary differential equations”, Discr. Contin. Dynam. Syst., 8:1 (2002), 39–54 | DOI | MR | Zbl

[23] Mawhin J., Thompson H. B., “Periodic or bounded solutions of Caratheodory systems of ordinary differential equations”, J. Dynam. Differ. Equations., 15:2–3 (2003), 327–334 | DOI | MR | Zbl

[24] Obukhovskii V., Zecca P., Loi N. V., Kornev S., Method of Guiding Functions in Problems of Nonlinear Analysis, Berlin, 2013 | MR | Zbl

[25] Rachinskii D. I., “Multivalent guiding functions in forced oscillation problems”, Nonlin. Anal. Theory Meth. Appl., 26 (1996), 631–639 | DOI | MR | Zbl