On matrices with summable diagonals
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 23-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, basic concepts and facts related to infinite matrices are considered. The matrix (operator) approach is applied to the proof of Wiener's theorem on absolutely convergent Fourier series. A modification of the method of similar operators related to the Friedrichs equation is studied. Using the method of similar operators, we reduce a strictly lower triangular matrix with summable diagonals to the diagonal (block diagonal) form; this allows one to find the spectrum.
Keywords: matrix with summable diagonals, method of similar operators, spectrum.
@article{INTO_2021_194_a2,
     author = {A. G. Baskakov and G. V. Garkavenko and N. B. Uskova},
     title = {On matrices with summable diagonals},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {23--37},
     year = {2021},
     volume = {194},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a2/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - G. V. Garkavenko
AU  - N. B. Uskova
TI  - On matrices with summable diagonals
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 23
EP  - 37
VL  - 194
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a2/
LA  - ru
ID  - INTO_2021_194_a2
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A G. V. Garkavenko
%A N. B. Uskova
%T On matrices with summable diagonals
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 23-37
%V 194
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a2/
%G ru
%F INTO_2021_194_a2
A. G. Baskakov; G. V. Garkavenko; N. B. Uskova. On matrices with summable diagonals. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 23-37. http://geodesic.mathdoc.fr/item/INTO_2021_194_a2/

[1] Baskakov A. G., “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. mat. zh., 24:1 (1983), 21–39 | MR

[2] Baskakov A. G., Garmonicheskii analiz lineinykh operatorov, Voronezh, 1986

[3] Baskakov A. G., “Abstraktnyi garmonicheskii analiz i asimptoticheskie otsenki elementov obratnykh matrits”, Mat. zametki., 52:2 (1992), 17–26 | Zbl

[4] Baskakov A. G., “Asimptoticheskie otsenki elementov matrits obratnykh operatorov i garmonicheskii analiz”, Sib. mat. zh., 38:1 (1997), 14–28 | MR | Zbl

[5] Baskakov A. G., Uskova N. B., “Obobschennyi metod Fure dlya sistemy differentsialnykh uravnenii pervogo poryadka i gruppy operatorov”, Differ. uravn., 54:2 (2018), 276–280 | Zbl

[6] Baskakov A. G., Uskova N. B., “Spektralnyi analiz differentsialnykh operatorov s involyutsiei i gruppy operatorov”, Differ. uravn., 54:9 (2018), 1287–1291 | Zbl

[7] Baskakov A. G., Krishtal I. A., “Garmonicheskii analiz kauzalnykh operatorov i ikh spektralnye svoistva”, Izv. RAN. Ser. mat., 69:3 (2005), 3–-54 | MR | Zbl

[8] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[9] Garkavenko G. V., “O diagonalizatsii nekotorykh klassov lineinykh operatorov”, Izv. vuzov. Mat., 11 (1994), 14-–19 | MR | Zbl

[10] Garkavenko G. V., Uskova N. B., “Metod podobnykh operatorov v issledovanii spektralnykh svoistv raznostnogo operatora s rastuschim potentsialom”, Sib. elektron. mat. izvestiya., 14 (2017), 673–689 | MR | Zbl

[11] Garkavenko G. V., Uskova N. B., “Spektralnyi analiz odnogo klassa raznostnykh operatorov s rastuschim potentsialom”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 16:4 (2016), 395–402 | MR | Zbl

[12] Mak-Kinsi Dzh., Vvedenie v teoriyu igr, GIFML, M., 1960 | MR

[13] Katrakhov V. V., Sitnik S. M., “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Sovr. mat. Fundam. napravl., 64:2 (2018), 211–426 | MR

[14] Kakhan Zh. P., Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976

[15] Kuk R., Beskonechnye matritsy i prostranstva posledovatelnostei, GIFML, M., 1960

[16] Rudin U., Funktsionalnyi analiz, Mir, M., 1975

[17] Skrynnikov A. V., “O kvazinilpotentnom variante metoda Fridrikhsa v teorii podobiya lineinykh operatorov”, Funkts. anal. prilozh., 17:3 (1983), 89-–90 | MR | Zbl

[18] Baskakov A. G., Krishtal I. A., Uskova N. B., “Linear differential operator with an involution as a generator of an operator group”, J. Oper. Matr., 12:3 (2018), 723–756 | DOI | MR | Zbl

[19] Feintuch A., Saeks R., System theory. A Hilbert Space Approach, Academic Press, New York–London, 1982 | MR | Zbl

[20] Hinkkannen A., “On the diagonalization of a certain class of operators”, Michigan Math. J., 32:3 (1985), 349–359 | DOI | MR