On matrices with summable diagonals
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 23-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, basic concepts and facts related to infinite matrices are considered. The matrix (operator) approach is applied to the proof of Wiener's theorem on absolutely convergent Fourier series. A modification of the method of similar operators related to the Friedrichs equation is studied. Using the method of similar operators, we reduce a strictly lower triangular matrix with summable diagonals to the diagonal (block diagonal) form; this allows one to find the spectrum.
Keywords: matrix with summable diagonals, method of similar operators, spectrum.
@article{INTO_2021_194_a2,
     author = {A. G. Baskakov and G. V. Garkavenko and N. B. Uskova},
     title = {On matrices with summable diagonals},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {23--37},
     publisher = {mathdoc},
     volume = {194},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a2/}
}
TY  - JOUR
AU  - A. G. Baskakov
AU  - G. V. Garkavenko
AU  - N. B. Uskova
TI  - On matrices with summable diagonals
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 23
EP  - 37
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a2/
LA  - ru
ID  - INTO_2021_194_a2
ER  - 
%0 Journal Article
%A A. G. Baskakov
%A G. V. Garkavenko
%A N. B. Uskova
%T On matrices with summable diagonals
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 23-37
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a2/
%G ru
%F INTO_2021_194_a2
A. G. Baskakov; G. V. Garkavenko; N. B. Uskova. On matrices with summable diagonals. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 23-37. http://geodesic.mathdoc.fr/item/INTO_2021_194_a2/

[1] Baskakov A. G., “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. mat. zh., 24:1 (1983), 21–39 | MR

[2] Baskakov A. G., Garmonicheskii analiz lineinykh operatorov, Voronezh, 1986

[3] Baskakov A. G., “Abstraktnyi garmonicheskii analiz i asimptoticheskie otsenki elementov obratnykh matrits”, Mat. zametki., 52:2 (1992), 17–26 | Zbl

[4] Baskakov A. G., “Asimptoticheskie otsenki elementov matrits obratnykh operatorov i garmonicheskii analiz”, Sib. mat. zh., 38:1 (1997), 14–28 | MR | Zbl

[5] Baskakov A. G., Uskova N. B., “Obobschennyi metod Fure dlya sistemy differentsialnykh uravnenii pervogo poryadka i gruppy operatorov”, Differ. uravn., 54:2 (2018), 276–280 | Zbl

[6] Baskakov A. G., Uskova N. B., “Spektralnyi analiz differentsialnykh operatorov s involyutsiei i gruppy operatorov”, Differ. uravn., 54:9 (2018), 1287–1291 | Zbl

[7] Baskakov A. G., Krishtal I. A., “Garmonicheskii analiz kauzalnykh operatorov i ikh spektralnye svoistva”, Izv. RAN. Ser. mat., 69:3 (2005), 3–-54 | MR | Zbl

[8] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR

[9] Garkavenko G. V., “O diagonalizatsii nekotorykh klassov lineinykh operatorov”, Izv. vuzov. Mat., 11 (1994), 14-–19 | MR | Zbl

[10] Garkavenko G. V., Uskova N. B., “Metod podobnykh operatorov v issledovanii spektralnykh svoistv raznostnogo operatora s rastuschim potentsialom”, Sib. elektron. mat. izvestiya., 14 (2017), 673–689 | MR | Zbl

[11] Garkavenko G. V., Uskova N. B., “Spektralnyi analiz odnogo klassa raznostnykh operatorov s rastuschim potentsialom”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 16:4 (2016), 395–402 | MR | Zbl

[12] Mak-Kinsi Dzh., Vvedenie v teoriyu igr, GIFML, M., 1960 | MR

[13] Katrakhov V. V., Sitnik S. M., “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Sovr. mat. Fundam. napravl., 64:2 (2018), 211–426 | MR

[14] Kakhan Zh. P., Absolyutno skhodyaschiesya ryady Fure, Mir, M., 1976

[15] Kuk R., Beskonechnye matritsy i prostranstva posledovatelnostei, GIFML, M., 1960

[16] Rudin U., Funktsionalnyi analiz, Mir, M., 1975

[17] Skrynnikov A. V., “O kvazinilpotentnom variante metoda Fridrikhsa v teorii podobiya lineinykh operatorov”, Funkts. anal. prilozh., 17:3 (1983), 89-–90 | MR | Zbl

[18] Baskakov A. G., Krishtal I. A., Uskova N. B., “Linear differential operator with an involution as a generator of an operator group”, J. Oper. Matr., 12:3 (2018), 723–756 | DOI | MR | Zbl

[19] Feintuch A., Saeks R., System theory. A Hilbert Space Approach, Academic Press, New York–London, 1982 | MR | Zbl

[20] Hinkkannen A., “On the diagonalization of a certain class of operators”, Michigan Math. J., 32:3 (1985), 349–359 | DOI | MR