Cyclic solutions of the Pontryagin equation with a small parameter
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 167-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the existence of periodic solutions to systems of nonlinear equations with a small parameter. We find conditions for the existence of periodic solutions, which expand the range of applicability of Pontryagin's method of small parameter.
Keywords: differential equation, periodic solution, topological methods, rotation of a vector field.
@article{INTO_2021_194_a15,
     author = {Z. I. Sharifzoda and \`E. M. Muhamadiev and I. D. Nurov},
     title = {Cyclic solutions of the {Pontryagin} equation with a small parameter},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {167--171},
     publisher = {mathdoc},
     volume = {194},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a15/}
}
TY  - JOUR
AU  - Z. I. Sharifzoda
AU  - È. M. Muhamadiev
AU  - I. D. Nurov
TI  - Cyclic solutions of the Pontryagin equation with a small parameter
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 167
EP  - 171
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a15/
LA  - ru
ID  - INTO_2021_194_a15
ER  - 
%0 Journal Article
%A Z. I. Sharifzoda
%A È. M. Muhamadiev
%A I. D. Nurov
%T Cyclic solutions of the Pontryagin equation with a small parameter
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 167-171
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a15/
%G ru
%F INTO_2021_194_a15
Z. I. Sharifzoda; È. M. Muhamadiev; I. D. Nurov. Cyclic solutions of the Pontryagin equation with a small parameter. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 167-171. http://geodesic.mathdoc.fr/item/INTO_2021_194_a15/

[2] Bautin N. N., Leontovich E. A., Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1976

[3] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, GTTI, M., 1956

[4] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | MR

[5] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975

[6] Krasnoselskii M. A., Perov A. I., Povolotskii A. I., Zabreiko P. P., Vektornye polya na ploskosti, Fizmatgiz, M., 1963 | MR

[7] Mukhamadiev E. M., “K teorii periodicheskikh reshenii sistem obyknovennykh differentsialnykh uranenii”, Dokl. AN SSSR., 194:3 (1970), 510–513 | Zbl

[8] Pontryagin L. S., “Über Autoschwingungssysteme, die den Hamiltonschen nahe liegen”, Phys. Z. Sowjetunion., 6 (1934), 25–28