On the existence and uniqueness of a positive solution to a boundary-value problem for a nonlinear fractional-order functional differential equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a boundary-value problem for one nonlinear functional differential equation of fractional order. Using special topological means, we prove the existence of a unique positive solution to the problem considered.
Mots-clés : positive solution
Keywords: boundary-value problem, cone, Green's function.
@article{INTO_2021_194_a0,
     author = {G. \`E. Abduragimov},
     title = {On the existence and uniqueness of a positive solution to a boundary-value problem for a nonlinear fractional-order functional differential equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--7},
     publisher = {mathdoc},
     volume = {194},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_194_a0/}
}
TY  - JOUR
AU  - G. È. Abduragimov
TI  - On the existence and uniqueness of a positive solution to a boundary-value problem for a nonlinear fractional-order functional differential equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 3
EP  - 7
VL  - 194
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_194_a0/
LA  - ru
ID  - INTO_2021_194_a0
ER  - 
%0 Journal Article
%A G. È. Abduragimov
%T On the existence and uniqueness of a positive solution to a boundary-value problem for a nonlinear fractional-order functional differential equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 3-7
%V 194
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_194_a0/
%G ru
%F INTO_2021_194_a0
G. È. Abduragimov. On the existence and uniqueness of a positive solution to a boundary-value problem for a nonlinear fractional-order functional differential equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 5, Tome 194 (2021), pp. 3-7. http://geodesic.mathdoc.fr/item/INTO_2021_194_a0/

[1] Azbelev N. V., Maksimov V. P., Simonov P. M., “Funktsionalno-differentsialnye uravneniya i ikh prilozheniya”, Vestn. Udmurt. gos. un-ta. Mat., 1 (2009), 3–23 | MR

[2] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962

[3] Krein S. G., Funktsionalnyi analiz, Nauka, M., 1972 | MR

[4] Agarwal R. P., Stanek S., “Positive solutions of singular value problems for delay differential equations”, Dynam. Syst. Appl., 16:4 (2007), 755–770 | MR | Zbl

[5] Hong C., Yeh C., Lee C., Wong F., “Existence of positive solutions for functional equations”, Comput. Math. Appl., 40 (2000), 783–792 | DOI | MR | Zbl

[6] Hong C., Yeh C., Lee C., Wong F., “Existence of positive solutions for higher-order functional differential equations”, J. Math. Anal. Appl., 297:1 (2004), 14–23 | DOI | MR | Zbl

[7] Ma R., “Positive solutions for boundary value problems of functional differential equations”, Appl. Math. Comput., 193:1 (2007), 66–72 | MR | Zbl

[8] Sun Y., Han M., Debnath L., “Existence of positive periodic solutions for a class of functional differential equations”, Appl. Math. Comput., 190:1 (2007), 699–704 | MR | Zbl

[9] Weng P., Jiang D., “Existence of positive solutions for boundary value problem of second-order FDE”, Appl. Math. Comput., 37:10 (1999), 1–9 | DOI | MR | Zbl

[10] Wong F. H., Wang S. P., Chen T. G., “Existence of positive solutions for second order functional differential equations”, Comput. Math. Appl., 10:10 (2008), 2580–2587 | DOI | MR | Zbl

[11] Yin F., Fugi F., Li Y., “The existence of positive solutions for the quasilinear functional delay differential equations”, J. Math. Stud., 35:4 (2002), 364–370 | MR | Zbl

[12] Zhanbing B., Haishen L., “Positive solutions for boundary value problem on nonlinear fractional differential equation”, J. Math. Anal. Appl., 311:2 (2005), 495–505 | DOI | MR | Zbl

[13] Zima M., “On positive solutions of functional differential equations in Banach spaces”, J. Inequalities Appl., 6:3 (2000), 359–371 | MR