Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_193_a6, author = {A. A. Golubkov}, title = {Spectrum of the {Sturm--Liouville} operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {45--68}, publisher = {mathdoc}, volume = {193}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a6/} }
TY - JOUR AU - A. A. Golubkov TI - Spectrum of the Sturm--Liouville operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 45 EP - 68 VL - 193 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_193_a6/ LA - ru ID - INTO_2021_193_a6 ER -
%0 Journal Article %A A. A. Golubkov %T Spectrum of the Sturm--Liouville operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 45-68 %V 193 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_193_a6/ %G ru %F INTO_2021_193_a6
A. A. Golubkov. Spectrum of the Sturm--Liouville operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 45-68. http://geodesic.mathdoc.fr/item/INTO_2021_193_a6/
[1] Bellman R., Kuk K. L., Differentsialno-raznostnye uravneniya, Mir, M., 1967
[2] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968
[3] Golubkov A. A., “Obratnaya zadacha dlya operatorov Shturma—Liuvillya v kompleksnoi ploskosti”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 18:2 (2018), 144–-156 | MR | Zbl
[4] Golubkov A. A., “Asimptotika peredatochnoi matritsy uravneniya Shturma—Liuvillya s kusochno tselym potentsialom na krivoi”, Vestn. MGU. Ser. 1. Mat. Mekh., 2 (2019), 37–41 | Zbl
[5] Ishkin Kh. K., “O lokalizatsii spektra zadachi s kompleksnym vesom”, Fundam. prikl. mat., 12:5 (2006), 49-–64
[6] Ishkin Kh. K., “O kriterii bezmonodromnosti uravneniya Shturma—Liuvillya”, Mat. zametki., 94:4 (2013), 552–568 | MR | Zbl
[7] Ishkin Kh. K., “Kriterii lokalizatsii spektra operatora Shturma—Liuvillya na krivoi”, Algebra anal., 28:1 (2016), 52-–88 | MR
[8] Ishkin Kh. K., Rezbaev A. V., “K formule Devisa o raspredelenii sobstvennykh chisel nesamosopryazhennogo differentsialnogo operatora”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 153 (2018), 84-–93 | MR
[9] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958
[10] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956
[11] Levitan B. M., Sargsyan I. S., Operatory Shturma—Liuvillya i Diraka, Nauka, M., 1988 | MR
[12] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR
[13] Lidskii V. B., Sadovnichii V. A., “Asimptoticheskie formuly dlya kornei odnogo klassa tselykh funktsii”, Mat. sb., 75 (117):4 (1968), 558–-566 | Zbl
[14] Marchenko V. A., Operatory Shturma—Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR
[15] Sadovnichii V. A., Lyubishkin V. A., Belabbasi Yu., “O nulyakh tselykh funktsii odnogo klassa”, Tr. semin. im. I. G. Petrovskogo., 8 (1982), 211–-217 | Zbl
[16] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983
[17] Yurko V. A., “O kraevykh zadachakh s usloviyami razryva vnutri intervala”, Differ. uravn., 36:8 (2000), 1139–-1140 | MR | Zbl
[18] Yurko V. A., “Spektralnyi analiz differentsialnykh operatorov vysshikh poryadkov s usloviyami razryva vo vnutrennei tochke”, Sovr. mat. Fundam. napr., 63:2 (2017), 362–372
[19] Amirov R. Kh., Ozkan A. S., “Discontinuous Sturm–Liouville problems with eigenvalue dependent boundary conditions”, Math. Phys. Anal. Geom., 17:3–4 (2014), 483–-491 | DOI | MR | Zbl
[20] Dickson D. G., Expansions in Series of Solutions of Linear Difference-Differential and Infinite Order Differential Equations with Constant Coefficients, Am. Math. Soc., Providence, Rhode Island, 1957 | MR | Zbl
[21] Duistermaat J. J., Grünbaum F. A., “Differential equations in the spectral parameter”, Commun. Math. Phys., 103:2 (1986), 177–240 | DOI | MR | Zbl
[22] Horn J., “Verwendung asymptotischer Darstellungen zur Untersuchung der Integrale einer speciellen linearen Differentialgleichung, II”, Math. Ann., 49:3–4 (1897), 473–-496 | DOI | MR | Zbl
[23] Langer R. E., “On the zeros of exponential sums and integrals”, Bull. Am. Math. Soc., 37 (1931), 213–-239 | DOI | MR
[24] Mennicken R., Möller M., Non-Self-Adjoint Boundary Eigenvalue Problems, Elsevier, Amsterdam, 2003 | MR
[25] Tretter C., “Boundary eigenvalue problems with differential equations $N \eta = \lambda P \eta $ with $ \lambda$-polynomial boundary conditions”, J. Differ. Equations., 170:2 (2001), 408–-471 | DOI | MR | Zbl
[26] Turrittin H. L., “Asymptotic distribution of zeros for certain exponential sums”, Am. J. Math., 66:2 (1944), 199–-228 | DOI | MR | Zbl
[27] Walter J., “Regular eigenvalue problems with eigenvalue parameter in the boundary condition”, Math. Z., 133:4 (1973), 301–312 | DOI | MR | Zbl