Spectrum of the Sturm--Liouville operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 45-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

For large values of the modulus of the spectral parameter, we obtain and analyze the asymptotics of solutions of the standard Sturm–Liouville equation with a piecewise integer potential on a general rectifiable curve lying in the complex plane and having a finite number of points at which the solutions and/or their derivatives have discontinuities polynomially depending on the spectral parameter. For decaying boundary conditions that also depend on the spectral parameter polynomially, we examine the spectrum of the corresponding Sturm–Liouville operator.
Mots-clés : Sturm–Liouville equation on a curve
Keywords: discontinuity condition for solutions, piecewise integral potential, asymptotics of solutions, asymptotics of the spectrum.
@article{INTO_2021_193_a6,
     author = {A. A. Golubkov},
     title = {Spectrum of the {Sturm--Liouville} operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {45--68},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a6/}
}
TY  - JOUR
AU  - A. A. Golubkov
TI  - Spectrum of the Sturm--Liouville operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 45
EP  - 68
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a6/
LA  - ru
ID  - INTO_2021_193_a6
ER  - 
%0 Journal Article
%A A. A. Golubkov
%T Spectrum of the Sturm--Liouville operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 45-68
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a6/
%G ru
%F INTO_2021_193_a6
A. A. Golubkov. Spectrum of the Sturm--Liouville operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 45-68. http://geodesic.mathdoc.fr/item/INTO_2021_193_a6/

[1] Bellman R., Kuk K. L., Differentsialno-raznostnye uravneniya, Mir, M., 1967

[2] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[3] Golubkov A. A., “Obratnaya zadacha dlya operatorov Shturma—Liuvillya v kompleksnoi ploskosti”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 18:2 (2018), 144–-156 | MR | Zbl

[4] Golubkov A. A., “Asimptotika peredatochnoi matritsy uravneniya Shturma—Liuvillya s kusochno tselym potentsialom na krivoi”, Vestn. MGU. Ser. 1. Mat. Mekh., 2 (2019), 37–41 | Zbl

[5] Ishkin Kh. K., “O lokalizatsii spektra zadachi s kompleksnym vesom”, Fundam. prikl. mat., 12:5 (2006), 49-–64

[6] Ishkin Kh. K., “O kriterii bezmonodromnosti uravneniya Shturma—Liuvillya”, Mat. zametki., 94:4 (2013), 552–568 | MR | Zbl

[7] Ishkin Kh. K., “Kriterii lokalizatsii spektra operatora Shturma—Liuvillya na krivoi”, Algebra anal., 28:1 (2016), 52-–88 | MR

[8] Ishkin Kh. K., Rezbaev A. V., “K formule Devisa o raspredelenii sobstvennykh chisel nesamosopryazhennogo differentsialnogo operatora”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obz., 153 (2018), 84-–93 | MR

[9] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[10] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[11] Levitan B. M., Sargsyan I. S., Operatory Shturma—Liuvillya i Diraka, Nauka, M., 1988 | MR

[12] Leontev A. F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[13] Lidskii V. B., Sadovnichii V. A., “Asimptoticheskie formuly dlya kornei odnogo klassa tselykh funktsii”, Mat. sb., 75 (117):4 (1968), 558–-566 | Zbl

[14] Marchenko V. A., Operatory Shturma—Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[15] Sadovnichii V. A., Lyubishkin V. A., Belabbasi Yu., “O nulyakh tselykh funktsii odnogo klassa”, Tr. semin. im. I. G. Petrovskogo., 8 (1982), 211–-217 | Zbl

[16] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983

[17] Yurko V. A., “O kraevykh zadachakh s usloviyami razryva vnutri intervala”, Differ. uravn., 36:8 (2000), 1139–-1140 | MR | Zbl

[18] Yurko V. A., “Spektralnyi analiz differentsialnykh operatorov vysshikh poryadkov s usloviyami razryva vo vnutrennei tochke”, Sovr. mat. Fundam. napr., 63:2 (2017), 362–372

[19] Amirov R. Kh., Ozkan A. S., “Discontinuous Sturm–Liouville problems with eigenvalue dependent boundary conditions”, Math. Phys. Anal. Geom., 17:3–4 (2014), 483–-491 | DOI | MR | Zbl

[20] Dickson D. G., Expansions in Series of Solutions of Linear Difference-Differential and Infinite Order Differential Equations with Constant Coefficients, Am. Math. Soc., Providence, Rhode Island, 1957 | MR | Zbl

[21] Duistermaat J. J., Grünbaum F. A., “Differential equations in the spectral parameter”, Commun. Math. Phys., 103:2 (1986), 177–240 | DOI | MR | Zbl

[22] Horn J., “Verwendung asymptotischer Darstellungen zur Untersuchung der Integrale einer speciellen linearen Differentialgleichung, II”, Math. Ann., 49:3–4 (1897), 473–-496 | DOI | MR | Zbl

[23] Langer R. E., “On the zeros of exponential sums and integrals”, Bull. Am. Math. Soc., 37 (1931), 213–-239 | DOI | MR

[24] Mennicken R., Möller M., Non-Self-Adjoint Boundary Eigenvalue Problems, Elsevier, Amsterdam, 2003 | MR

[25] Tretter C., “Boundary eigenvalue problems with differential equations $N \eta = \lambda P \eta $ with $ \lambda$-polynomial boundary conditions”, J. Differ. Equations., 170:2 (2001), 408–-471 | DOI | MR | Zbl

[26] Turrittin H. L., “Asymptotic distribution of zeros for certain exponential sums”, Am. J. Math., 66:2 (1944), 199–-228 | DOI | MR | Zbl

[27] Walter J., “Regular eigenvalue problems with eigenvalue parameter in the boundary condition”, Math. Z., 133:4 (1973), 301–312 | DOI | MR | Zbl