Spectrum of the Sturm--Liouville operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 45-68

Voir la notice de l'article provenant de la source Math-Net.Ru

For large values of the modulus of the spectral parameter, we obtain and analyze the asymptotics of solutions of the standard Sturm–Liouville equation with a piecewise integer potential on a general rectifiable curve lying in the complex plane and having a finite number of points at which the solutions and/or their derivatives have discontinuities polynomially depending on the spectral parameter. For decaying boundary conditions that also depend on the spectral parameter polynomially, we examine the spectrum of the corresponding Sturm–Liouville operator.
Mots-clés : Sturm–Liouville equation on a curve
Keywords: discontinuity condition for solutions, piecewise integral potential, asymptotics of solutions, asymptotics of the spectrum.
@article{INTO_2021_193_a6,
     author = {A. A. Golubkov},
     title = {Spectrum of the {Sturm--Liouville} operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {45--68},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a6/}
}
TY  - JOUR
AU  - A. A. Golubkov
TI  - Spectrum of the Sturm--Liouville operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 45
EP  - 68
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a6/
LA  - ru
ID  - INTO_2021_193_a6
ER  - 
%0 Journal Article
%A A. A. Golubkov
%T Spectrum of the Sturm--Liouville operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 45-68
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a6/
%G ru
%F INTO_2021_193_a6
A. A. Golubkov. Spectrum of the Sturm--Liouville operator on a curve with parameters in the boundary conditions and discontinuity conditions for solutions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 45-68. http://geodesic.mathdoc.fr/item/INTO_2021_193_a6/