On a system of Volterra integral equations with a weakly singular kernel
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 33-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the existence and uniqueness of solutions for a system of Volterra integral equations with a weakly singular kernel. We approximate the solution of this system using the product integration method. The accuracy and efficiency of this method are illustrated in some numerical examples.
Keywords: nonlinear Volterra integral equation, integro-differential equation, fixed point, product integration method.
@article{INTO_2021_193_a5,
     author = {M. Ghiat and S. Kamouche and A. Khellaf and W. Merchela},
     title = {On a system of {Volterra} integral equations with a weakly singular kernel},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a5/}
}
TY  - JOUR
AU  - M. Ghiat
AU  - S. Kamouche
AU  - A. Khellaf
AU  - W. Merchela
TI  - On a system of Volterra integral equations with a weakly singular kernel
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 33
EP  - 44
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a5/
LA  - ru
ID  - INTO_2021_193_a5
ER  - 
%0 Journal Article
%A M. Ghiat
%A S. Kamouche
%A A. Khellaf
%A W. Merchela
%T On a system of Volterra integral equations with a weakly singular kernel
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 33-44
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a5/
%G ru
%F INTO_2021_193_a5
M. Ghiat; S. Kamouche; A. Khellaf; W. Merchela. On a system of Volterra integral equations with a weakly singular kernel. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 33-44. http://geodesic.mathdoc.fr/item/INTO_2021_193_a5/

[1] Ahues M., Largillier A., Titaud O., “The roles of a weak singularity and the grid uniformity in relative error bounds”, Numer. Funct. Anal. Optim., 22:7 (2001), 789–814 | DOI | MR | Zbl

[2] Atkinson K., Han W., Theoretical Numerical Analysis, Springer-Verlag, New York, 2009 | MR | Zbl

[3] Brunner H., van der Houwen P. J., “The numerical solution of Volterra equations”, Math. Comput., 51:183 (1988), 379 | MR

[4] Ghiat M., Guebbai H., “Analytical and numerical study for an integro-differential nonlinear equation with weakly singular kernel”, Comput. Appl. Math., 37:4 (2018), 4661–4674 | DOI | MR | Zbl

[5] Guebbai H., Aissaoui M. Z., Debbar I., Khalla B., “Analytical and numerical study for an integro-differential nonlinear Volterra equation”, Appl. Math. Comput., 229 (2014), 367–373 | MR | Zbl

[6] Linz P., Analytical and Numerical Methods for Volterra Equations, SIAM, Philadelphia, 1985 | MR | Zbl

[7] Maleknejad K., Torabi P., Sauter S., “Numerical solution of a nonlinear Volterra integral equation”, Vietnam J. Math., 44:1 (2015), 1–24 | MR

[8] Maleknejad K., Torabi P., Mollapourasl R., “Fixed point method for solving nonlinear quadratic Volterra integral equations”, Comp. Math. Appl., 62:6 (2011), 2555–2566 | DOI | MR | Zbl

[9] Segni S., Ghiat M., Guebbai H., “New approximation method for Volterra nonlinear integro-differential equation”, Asian-Eur. J. Math., 12:1 (2019), 1950016 | DOI | MR | Zbl