Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_193_a5, author = {M. Ghiat and S. Kamouche and A. Khellaf and W. Merchela}, title = {On a system of {Volterra} integral equations with a weakly singular kernel}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {33--44}, publisher = {mathdoc}, volume = {193}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a5/} }
TY - JOUR AU - M. Ghiat AU - S. Kamouche AU - A. Khellaf AU - W. Merchela TI - On a system of Volterra integral equations with a weakly singular kernel JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 33 EP - 44 VL - 193 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_193_a5/ LA - ru ID - INTO_2021_193_a5 ER -
%0 Journal Article %A M. Ghiat %A S. Kamouche %A A. Khellaf %A W. Merchela %T On a system of Volterra integral equations with a weakly singular kernel %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 33-44 %V 193 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_193_a5/ %G ru %F INTO_2021_193_a5
M. Ghiat; S. Kamouche; A. Khellaf; W. Merchela. On a system of Volterra integral equations with a weakly singular kernel. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 33-44. http://geodesic.mathdoc.fr/item/INTO_2021_193_a5/