On a system of Volterra integral equations with a weakly singular kernel
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 33-44

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the existence and uniqueness of solutions for a system of Volterra integral equations with a weakly singular kernel. We approximate the solution of this system using the product integration method. The accuracy and efficiency of this method are illustrated in some numerical examples.
Keywords: nonlinear Volterra integral equation, integro-differential equation, fixed point, product integration method.
@article{INTO_2021_193_a5,
     author = {M. Ghiat and S. Kamouche and A. Khellaf and W. Merchela},
     title = {On a system of {Volterra} integral equations with a weakly singular kernel},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a5/}
}
TY  - JOUR
AU  - M. Ghiat
AU  - S. Kamouche
AU  - A. Khellaf
AU  - W. Merchela
TI  - On a system of Volterra integral equations with a weakly singular kernel
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 33
EP  - 44
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a5/
LA  - ru
ID  - INTO_2021_193_a5
ER  - 
%0 Journal Article
%A M. Ghiat
%A S. Kamouche
%A A. Khellaf
%A W. Merchela
%T On a system of Volterra integral equations with a weakly singular kernel
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 33-44
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a5/
%G ru
%F INTO_2021_193_a5
M. Ghiat; S. Kamouche; A. Khellaf; W. Merchela. On a system of Volterra integral equations with a weakly singular kernel. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 33-44. http://geodesic.mathdoc.fr/item/INTO_2021_193_a5/