On an a~priori majorant of the least eigenvalues of the Sturm--Liouville problem
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 25-27
Voir la notice de l'article provenant de la source Math-Net.Ru
We examine the exact a priori majorant $M_\gamma\rightleftharpoons\sup\limits_{q\in A_\gamma}\lambda_0(q)$ of the least eigenvalue of the Sturm–Liouville problem
$-y''+qy=\lambda y$, $y(0)=y(1)=0$, with a potential $q\in C[0,1]$ of the class $A_\gamma$ determined by the conditions $q\le 0$ and $\int\limits_0^1|q|^\gamma dx=1$, where $\gamma\in(0,1/2)$. For this majorant, we prove the strict estimate $M_\gamma\pi^2$. The last estimate was known earlier in the case where $\gamma1/3$.
Mots-clés :
Sturm–Liouville problem
Keywords: estimate of eigenvalues.
Keywords: estimate of eigenvalues.
@article{INTO_2021_193_a3,
author = {A. A. Vladimirov and E. S. Karulina},
title = {On an a~priori majorant of the least eigenvalues of the {Sturm--Liouville} problem},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {25--27},
publisher = {mathdoc},
volume = {193},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a3/}
}
TY - JOUR AU - A. A. Vladimirov AU - E. S. Karulina TI - On an a~priori majorant of the least eigenvalues of the Sturm--Liouville problem JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 25 EP - 27 VL - 193 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_193_a3/ LA - ru ID - INTO_2021_193_a3 ER -
%0 Journal Article %A A. A. Vladimirov %A E. S. Karulina %T On an a~priori majorant of the least eigenvalues of the Sturm--Liouville problem %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 25-27 %V 193 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_193_a3/ %G ru %F INTO_2021_193_a3
A. A. Vladimirov; E. S. Karulina. On an a~priori majorant of the least eigenvalues of the Sturm--Liouville problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 25-27. http://geodesic.mathdoc.fr/item/INTO_2021_193_a3/