Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_193_a3, author = {A. A. Vladimirov and E. S. Karulina}, title = {On an a~priori majorant of the least eigenvalues of the {Sturm--Liouville} problem}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {25--27}, publisher = {mathdoc}, volume = {193}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a3/} }
TY - JOUR AU - A. A. Vladimirov AU - E. S. Karulina TI - On an a~priori majorant of the least eigenvalues of the Sturm--Liouville problem JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 25 EP - 27 VL - 193 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_193_a3/ LA - ru ID - INTO_2021_193_a3 ER -
%0 Journal Article %A A. A. Vladimirov %A E. S. Karulina %T On an a~priori majorant of the least eigenvalues of the Sturm--Liouville problem %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 25-27 %V 193 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_193_a3/ %G ru %F INTO_2021_193_a3
A. A. Vladimirov; E. S. Karulina. On an a~priori majorant of the least eigenvalues of the Sturm--Liouville problem. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 25-27. http://geodesic.mathdoc.fr/item/INTO_2021_193_a3/
[1] Ezhak S. S., “Otsenki pervogo sobstvennogo znacheniya zadachi Shturma—Liuvillya s usloviyami Dirikhle”, Kachestvennye svoistva reshenii differentsialnykh uravnenii i smezhnye voprosy spektralnogo analiza, YuNITI-DANA, M., 2012, 517–559
[2] Ezhak S. S., “Ob odnoi zadache minimizatsii funktsionala, porozhdennogo zadachei Shturma—Liuvillya s integralnym usloviem na potentsial”, Vestn. SamGU., 6 (128) (2015), 57–61
[3] Ezhak S. S., “On estimates for the first eigenvalue of the Sturm–Liouville problem with Dirichlet boundary conditions and integral condition”, Differential and Difference Equations with Applications, Springer-Verlag, New York, 2013, 387–394 | DOI | MR | Zbl
[4] Ezhak S., Telnova M., “On estimates for the first eigenvalue of some Sturm–Liouville problems with Dirichlet boundary conditions and a weighted integral condition”, Proc. Int. Workshop on the Qualitative Theory of Differential Equations “QUALITDE-2016”, A. Razmadze Math. Inst., Tbilisi, Georgia, 2016, 81–85 | MR