Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_193_a2, author = {E. I. Biryukova}, title = {An analog of the {Jordan--Dirichlet} theorem for an operator with involution on a graph}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {17--24}, publisher = {mathdoc}, volume = {193}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a2/} }
TY - JOUR AU - E. I. Biryukova TI - An analog of the Jordan--Dirichlet theorem for an operator with involution on a graph JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 17 EP - 24 VL - 193 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_193_a2/ LA - ru ID - INTO_2021_193_a2 ER -
%0 Journal Article %A E. I. Biryukova %T An analog of the Jordan--Dirichlet theorem for an operator with involution on a graph %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 17-24 %V 193 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_193_a2/ %G ru %F INTO_2021_193_a2
E. I. Biryukova. An analog of the Jordan--Dirichlet theorem for an operator with involution on a graph. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 17-24. http://geodesic.mathdoc.fr/item/INTO_2021_193_a2/