On the rate of growth of eigenvalues of a fourth-order spectral problem with derivatives with respect to measure
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 158-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we clarify the rate of growth of eigenvalues of one fourth-order spectral problem with nonsmooth solutions. The analysis is based on the pointwise approach proposed by Yu. V. Pokornyi, which has shown its effectiveness in studying linear second- and fourth-order boundary-value problems with continuous solutions.
Keywords: boundary-value problem, mathematical model, spectral problem, eigenvalue, growth rate.
@article{INTO_2021_193_a16,
     author = {S. A. Shabrov and M. V. Shabrova and E. A. Shaina},
     title = {On the rate of growth of eigenvalues of a fourth-order spectral problem with derivatives with respect to measure},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {158--162},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a16/}
}
TY  - JOUR
AU  - S. A. Shabrov
AU  - M. V. Shabrova
AU  - E. A. Shaina
TI  - On the rate of growth of eigenvalues of a fourth-order spectral problem with derivatives with respect to measure
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 158
EP  - 162
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a16/
LA  - ru
ID  - INTO_2021_193_a16
ER  - 
%0 Journal Article
%A S. A. Shabrov
%A M. V. Shabrova
%A E. A. Shaina
%T On the rate of growth of eigenvalues of a fourth-order spectral problem with derivatives with respect to measure
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 158-162
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a16/
%G ru
%F INTO_2021_193_a16
S. A. Shabrov; M. V. Shabrova; E. A. Shaina. On the rate of growth of eigenvalues of a fourth-order spectral problem with derivatives with respect to measure. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 158-162. http://geodesic.mathdoc.fr/item/INTO_2021_193_a16/

[1] Baev A. D., Shabrov S. A., Golovaneva F. V., Meach Mon., “Funktsiya vliyaniya differentsialnoi modeli chetvertogo poryadka”, Vestn. Voronezh. in-ta GPS MChS., 3:12 (2014), 65–73

[2] Baev A. D., Shabrov S. A., Golovaneva F. V., Meach Mon., “O edinstvennosti klassicheskogo resheniya matematicheskoi modeli vynuzhdennykh kolebanii sterzhnevoi sistemy s osobennostyami”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2 (2014), 74–80 | Zbl

[3] Baev A. D., Shabrov S. A., Meach Mon., “O edinstvennosti resheniya matematicheskoi modeli vynuzhdennykh kolebanii struny s osobennostyami”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2014, no. 1, 50–55

[4] Gantmakher F. R., Krein M. G., Ostsilyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gos. izd. tekh–teor. lit–ry, M., 1950 | MR

[5] Davydova M. B., Pokornyi Yu. V., Zvereva M. B., Shabrov S. A., “Differentsial Stiltesa v impulsnykh zadachakh s razryvnymi resheniyami”, Dokl. RAN., 428:5 (2009), 595–597 | Zbl

[6] Davydova M. B., Shabrov S. A., “O chisle reshenii nelineinoi kraevoi zadachi s integralom Stiltesa”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 11:4 (2011), 13–17 | MR

[7] Zvereva M. B., Differentsialnye uravneniya s razryvnymi resheniyami: kachestvennaya teoriya, Saarbryukken, 2012

[8] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[9] Lovitt U. V., Lineinye integralnye uravneniya, GITTL, M., 1957

[10] Myshkis A. D., “O resheniyakh lineinogo odnorodnogo dvumernogo differentsialnogo neravenstva vtorogo poryadka s obobschennymi koeffitsientami”, Differ. uravn., 32:5 (1996), 615–619 | MR | Zbl

[11] Pokornyi Yu. V., “Integral Stiltesa i proizvodnye po mere v obyknovennykh differentsialnykh uravneniyakh”, Dokl. RAN., 364:2 (1999), 167–169 | MR | Zbl

[12] Pokornyi Yu. V., Bakhtina Zh. I., Zvereva M. B., Shabrov S. A., Ostsillyatsionnyi metod Shturma v spektralnykh zadach, Fizmatlit, M., 2009

[13] Pokornyi Yu. V., Zvereva M. B., Ischenko A. S., Shabrov S. A., “O neregulyarnom rasshirenii ostsillyatsionnoi teorii spektralnoi zadachi Shturma—Liuvillya”, Mat. zametki., 82:4 (2007), 578–582 | Zbl

[14] Pokornyi Yu. V., Zvereva M. B., Shabrov S. A., “Ostsillyatsionnaya teoriya Shturma—Liuvillya dlya impulsnykh zadach”, Usp. mat. nauk., 63:1 (379) (2008), 111–154 | MR | Zbl

[15] Pokornyi Yu. V., Zvereva M. B., Shabrov S. A., “O zadache Shturma—Liuvillya dlya razryvnoi struny”, Izv. vuzov. Sev.-Kavkaz. region. Ser. Evstestv. nauki., 2004, no. 5, 186–190 | Zbl

[16] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Borovskikh A.V., Lazarev K. P., Shabrov S. A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004

[17] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980

[18] Shabrov S. A., “O neobkhodimom uslovii minimuma odnogo kvadratichnogo funktsionala s integralom Stiltesa”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 12:1 (2012), 52–55 | Zbl

[19] Shabrov S. A., “Ob odnoi matematicheskoi modeli malykh deformatsii sterzhnevoi sistemy s vnutrennimi osobennostyami”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2013, no. 1, 232–250

[20] Shabrov S. A., Bugakova N. I., Shaina E. A., “O skorosti rosta sobstvennykh znachenii odnoi spektralnoi zadachi chetvertogo poryadka s proizvodnymi po mere”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 4 (2018), 207–216

[21] Pokornyi Yu. V., Shabrov S. A., “Toward a Sturm–Liouville theory for an equation with generalized coefficients”, J. Math. Sci., 119:6 (2004), 769–787 | DOI | MR | Zbl

[22] Pokornyi Yu. V., Zvereva M. B., Shabrov S. A., “On extension of the Sturm–Liouville oscillation theory to problems with pulse parameters”, Ukrain. Math. J., 60:1 (2008), 108–113 | DOI | MR | Zbl