On a boundary-value problem with discontinuous solutions and strong nonlinearity
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 153-157

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, sufficient conditions for the existence of a solution to a second-order boundary-value problem with discontinuous solutions and strong nonlinearity are obtained. For the analysis of solutions to the boundary-value problem, we apply the pointwise approach proposed by Yu. V. Pokornyi and which has shown its effectiveness in studying second-order problems with nonsmooth solutions. Based on estimates of the Green function of the boundary-value problem obtained earlier by other authors, we show that the operator, which inverts the nonlinear problem considered, can be represented as the composition of a completely continuous operator and a continuous operator; this operator acts from the cone of nonnegative continuous functions into a narrower set. This fact allows one to prove the existence of a solution to a nonlinear boundary-value problem by using the theory of spaces with a cone.
Keywords: boundary-value problem, nonsmooth solution, strong nonlinearity, solvability.
@article{INTO_2021_193_a15,
     author = {D. A. Chechin and A. D. Baev and S. A. Shabrov},
     title = {On a boundary-value problem with discontinuous solutions and strong nonlinearity},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {153--157},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a15/}
}
TY  - JOUR
AU  - D. A. Chechin
AU  - A. D. Baev
AU  - S. A. Shabrov
TI  - On a boundary-value problem with discontinuous solutions and strong nonlinearity
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 153
EP  - 157
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a15/
LA  - ru
ID  - INTO_2021_193_a15
ER  - 
%0 Journal Article
%A D. A. Chechin
%A A. D. Baev
%A S. A. Shabrov
%T On a boundary-value problem with discontinuous solutions and strong nonlinearity
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 153-157
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a15/
%G ru
%F INTO_2021_193_a15
D. A. Chechin; A. D. Baev; S. A. Shabrov. On a boundary-value problem with discontinuous solutions and strong nonlinearity. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 153-157. http://geodesic.mathdoc.fr/item/INTO_2021_193_a15/