On a boundary-value problem with discontinuous solutions and strong nonlinearity
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 153-157
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work, sufficient conditions for the existence of a solution to a second-order boundary-value problem with discontinuous solutions and strong nonlinearity are obtained. For the analysis of solutions to the boundary-value problem, we apply the pointwise approach proposed by Yu. V. Pokornyi and which has shown its effectiveness in studying second-order problems with nonsmooth solutions. Based on estimates of the Green function of the boundary-value problem obtained earlier by other authors, we show that the operator, which inverts the nonlinear problem considered, can be represented as the composition of a completely continuous operator and a continuous operator; this operator acts from the cone of nonnegative continuous functions into a narrower set. This fact allows one to prove the existence of a solution to a nonlinear boundary-value problem by using the theory of spaces with a cone.
Keywords:
boundary-value problem, nonsmooth solution, strong nonlinearity, solvability.
@article{INTO_2021_193_a15,
author = {D. A. Chechin and A. D. Baev and S. A. Shabrov},
title = {On a boundary-value problem with discontinuous solutions and strong nonlinearity},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {153--157},
publisher = {mathdoc},
volume = {193},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a15/}
}
TY - JOUR AU - D. A. Chechin AU - A. D. Baev AU - S. A. Shabrov TI - On a boundary-value problem with discontinuous solutions and strong nonlinearity JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 153 EP - 157 VL - 193 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_193_a15/ LA - ru ID - INTO_2021_193_a15 ER -
%0 Journal Article %A D. A. Chechin %A A. D. Baev %A S. A. Shabrov %T On a boundary-value problem with discontinuous solutions and strong nonlinearity %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 153-157 %V 193 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_193_a15/ %G ru %F INTO_2021_193_a15
D. A. Chechin; A. D. Baev; S. A. Shabrov. On a boundary-value problem with discontinuous solutions and strong nonlinearity. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 153-157. http://geodesic.mathdoc.fr/item/INTO_2021_193_a15/