On a boundary-value problem with discontinuous solutions and strong nonlinearity
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 153-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, sufficient conditions for the existence of a solution to a second-order boundary-value problem with discontinuous solutions and strong nonlinearity are obtained. For the analysis of solutions to the boundary-value problem, we apply the pointwise approach proposed by Yu. V. Pokornyi and which has shown its effectiveness in studying second-order problems with nonsmooth solutions. Based on estimates of the Green function of the boundary-value problem obtained earlier by other authors, we show that the operator, which inverts the nonlinear problem considered, can be represented as the composition of a completely continuous operator and a continuous operator; this operator acts from the cone of nonnegative continuous functions into a narrower set. This fact allows one to prove the existence of a solution to a nonlinear boundary-value problem by using the theory of spaces with a cone.
Keywords: boundary-value problem, nonsmooth solution, strong nonlinearity, solvability.
@article{INTO_2021_193_a15,
     author = {D. A. Chechin and A. D. Baev and S. A. Shabrov},
     title = {On a boundary-value problem with discontinuous solutions and strong nonlinearity},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {153--157},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a15/}
}
TY  - JOUR
AU  - D. A. Chechin
AU  - A. D. Baev
AU  - S. A. Shabrov
TI  - On a boundary-value problem with discontinuous solutions and strong nonlinearity
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 153
EP  - 157
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a15/
LA  - ru
ID  - INTO_2021_193_a15
ER  - 
%0 Journal Article
%A D. A. Chechin
%A A. D. Baev
%A S. A. Shabrov
%T On a boundary-value problem with discontinuous solutions and strong nonlinearity
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 153-157
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a15/
%G ru
%F INTO_2021_193_a15
D. A. Chechin; A. D. Baev; S. A. Shabrov. On a boundary-value problem with discontinuous solutions and strong nonlinearity. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 153-157. http://geodesic.mathdoc.fr/item/INTO_2021_193_a15/

[9] Atkinson F., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968

[10] Baev A. D., Shabrov S. A., Golovaneva F. V., Meach Mon., “Funktsiya vliyaniya differentsialnoi modeli chetvertogo poryadka”, Vestn. Voronezh. in-ta GPS MChS., 3:12 (2014), 65–73

[11] Davydova M. B., Shabrov S. A., “O chisle reshenii nelineinoi kraevoi zadachi s integralom Stiltesa”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 11:4 (2011), 13–17 | MR

[12] Davydova M. B., Shabrov S. A., “O nelineinykh teoremakh sravneniya dlya differentsialnykh uravnenii vtorogo poryadka s proizvodnymi Radona—Nikodima”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2013, no. 1, 155–160

[13] Ivanov A. S., Savchuk A. M., “Sled poryadka minus odin dlya struny s singulyarnymi vesom”, Mat. zametki., 102:2 (2017), 197-–215 | Zbl

[14] Konechnaya N. N., Mirzoev K. A., Shkalikov A. A., “Ob asimptotike reshenii dvuchlennykh differentsialnykh uravnenii s singulyarnymi koeffitsientami”, Mat. zametki., 104:2 (2018), 231–242 | MR | Zbl

[15] Mityagin B. S., Dzhakov P. B., “Zony neustoichivosti odnomernykh periodicheskikh operatorov Shredingera i Diraka”, Usp. mat. nauk., 61:4 (370) (2006), 77–182 | MR | Zbl

[16] Mikhailets V. A., “Struktura nepreryvnogo spektra odnomernogo operatora Shredingera s tochechnymi vzaimodeistviyami”, Funkts. anal. prilozh., 30:2 (1996), 90–93 | MR | Zbl

[17] Pokornyi Yu. V., “Integral Stiltesa i proizvodnye po mere v obyknovennykh differentsialnykh uravneniyakh”, Dokl. RAN., 364:2 (1999), 167–169 | MR | Zbl

[18] Pokornyi Yu. V., “O differentsialakh Stiltesa v obobschennoi zadache Shturma-Liuvillya”, Dokl. RAN., 383:5 (2002), 1–4

[19] Pokornyi Yu. V., Bakhtina Zh. I., Zvereva M. B., Shabrov S. A., Ostsillyatsionnyi metod Shturma v spektralnykh zadach, Fizmatlit, M., 2009

[20] Pokornyi Yu. V., Zvereva M. B., Shabrov S. A., “Ostsillyatsionnaya teoriya Shturma—Liuvillya dlya impulsnykh zadach”, Usp. mat. nauk., 63:1 (379) (2008), 111–154 | MR | Zbl

[21] Pokornyi Yu. V., Zvereva M. B., Ischenko A. S., Shabrov S. A., “O neregulyarnom rasshirenii ostsillyatsionnoi teorii spektralnoi zadachi Shturma—Liuvillya”, Mat. zametki., 82:4 (2007), 578–582 | Zbl

[22] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Borovskikh A.V., Lazarev K. P., Shabrov S. A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004

[23] Savchuk A. M., “O bazisnosti sistemy sobstvennykh i prisoedinennykh funktsii odnomernogo operatora Diraka”, Izv. RAN. Ser. mat., 82:2 (2018), 113–-139 | MR | Zbl

[24] Savchuk A. M., Shkalikov A. A., “Obratnye zadachi dlya operatora Shturma-Liuvillya s potentsialami iz prostranstv Soboleva. Ravnomernaya ustoichivost”, Funkts. anal. prilozh., 44:4 (2010), 34–53 | MR | Zbl

[25] Shabrov S. A., “Ob odnoi matematicheskoi modeli malykh deformatsii sterzhnevoi sistemy s vnutrennimi osobennostyami”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2013, no. 1, 232–250

[26] Shabrov S. A., “Ob otsenkakh funktsii vliyaniya odnoi matematicheskoi modeli chetvertogo poryadka”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2 (2015), 168–179 | Zbl

[27] Pokornyi Yu. V., Shabrov S. A., “Toward a Sturm–Liouville theory for an equation with generalized coefficients”, J. Math. Sci., 119:6 (2004), 769–787 | DOI | MR | Zbl

[28] Pokornyi Yu. V., Zvereva M. B., Shabrov S. A., “On extension of the Sturm–Liouville oscillation theory to problems with pulse parameters”, Ukrain. Math. J., 60:1 (2008), 108–113 | DOI | MR | Zbl