Synthesis in the kernel of the three-way convolution operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 130-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

One says that an approximation theorem holds for a homogeneous convolution-type equation if any solution of this equation is approximated by its elementary solutions. In this paper, we state a necessary and sufficient condition for the validity of the approximation theorem for the homogeneous equation of three-way convolution for any choice of a convex domain and its characteristic function.
Keywords: exponential synthesis, kernel of operator, convolution-type operator, invariant subspace, analytic function.
@article{INTO_2021_193_a13,
     author = {A. A. Tatarkin and A. B. Shishkin},
     title = {Synthesis in the kernel of the three-way convolution operator},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {130--141},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a13/}
}
TY  - JOUR
AU  - A. A. Tatarkin
AU  - A. B. Shishkin
TI  - Synthesis in the kernel of the three-way convolution operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 130
EP  - 141
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a13/
LA  - ru
ID  - INTO_2021_193_a13
ER  - 
%0 Journal Article
%A A. A. Tatarkin
%A A. B. Shishkin
%T Synthesis in the kernel of the three-way convolution operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 130-141
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a13/
%G ru
%F INTO_2021_193_a13
A. A. Tatarkin; A. B. Shishkin. Synthesis in the kernel of the three-way convolution operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 130-141. http://geodesic.mathdoc.fr/item/INTO_2021_193_a13/

[1] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. I. Spektralnyi sintez na vypuklykh oblastyakh”, Mat. sb., 87 (129):4 (1972), 459–489

[2] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. II. Spektralnyi sintez na vypuklykh oblastyakh”, Mat. sb., 88:1 (1972), 3–30 | MR

[3] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[4] Shishkin A. B., “Spektralnyi sintez dlya operatora, porozhdaemogo umnozheniem na stepen nezavisimoi peremennoi”, Mat. sb., 182:6 (1991), 828–848 | Zbl

[5] Shishkin A. B., “Proektivnoe i in'ektivnoe opisaniya v kompleksnoi oblasti. Dvoistvennost”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inform., 14:1 (2014), 47–65 | Zbl

[6] Shishkin A. B., “Eksponentsialnyi sintez v yadre operatora simmetrichnoi svertki”, Zap. nauch. semin. POMI., 447 (2016), 129–170