An analog of the Paley–Wiener theorem for the Radon $K_\gamma$-transform for integer $|\gamma|$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 104-109
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The study of the Radon transformation based on weighted plane waves was initiated by I. A. Kipriyanov. In this paper, we obtain necessary and sufficient conditions satisfied by the Radon $K_\gamma$-transform of smooth functions that decrease together with all their derivatives.
Keywords: Paley–Wiener theorem, Radon–Kipriyanov transform, inversion of the Radon transform, inversion of the Radon–Kipriyanov transform.
Mots-clés : Radon transform
@article{INTO_2021_193_a10,
     author = {L. N. Lyakhov and M. G. Lapshina},
     title = {An analog of the {Paley{\textendash}Wiener} theorem for the {Radon} $K_\gamma$-transform for integer $|\gamma|$},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {104--109},
     year = {2021},
     volume = {193},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a10/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - M. G. Lapshina
TI  - An analog of the Paley–Wiener theorem for the Radon $K_\gamma$-transform for integer $|\gamma|$
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 104
EP  - 109
VL  - 193
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a10/
LA  - ru
ID  - INTO_2021_193_a10
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A M. G. Lapshina
%T An analog of the Paley–Wiener theorem for the Radon $K_\gamma$-transform for integer $|\gamma|$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 104-109
%V 193
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a10/
%G ru
%F INTO_2021_193_a10
L. N. Lyakhov; M. G. Lapshina. An analog of the Paley–Wiener theorem for the Radon $K_\gamma$-transform for integer $|\gamma|$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 104-109. http://geodesic.mathdoc.fr/item/INTO_2021_193_a10/

[12] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, GIFML, M., 1962

[13] Gots E. G., Lyakhov L. N., “Obraschenie preobrazovaniya Radona—Kipriyanova posredstvom drobnogo differentsirovaniya Gryunvalda—Letnikova—Rissa”, Dokl. RAN., 412:1 (2006), 11—14 | MR

[14] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, Mir, M., 1958

[15] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1987

[16] Kipriyanov I. A., “O preobrazovaniyakh Fure, Fure—Besselya i Radona”, Dokl. RAN., 360:2 (1998), 157–160 | MR | Zbl

[17] Kipriyanov I. A., Kononenko V. I., “O fundamentalnykh resheniyakh nekotorykh singulyarnykh uravnenii v chastnykh proizvodnykh”, Differ. uravn., 5:8 (1969), 1471–1483

[18] Levitan B. M., “Razlozhenie v ryady i integraly Fure po funktsiyam Besselya”, Usp. mat. nauk., 6:2 (1951), 102–143 | MR | Zbl

[19] Lyakhov L. N., “Ob odnom klasse gipersingulyarnykh integralov”, Dokl. AN SSSR., 315:2 (1990), 291–296 | Zbl

[20] Lyakhov L. N., “Obraschenie V-potentsialov Rissa”, Dokl. RAN., 321:3 (1991), 466–469 | Zbl

[21] Lyakhov L. N., “Obraschenie preobrazovaniya Kipriyanova—Radona”, Dokl. RAN., 399:5 (2004), 153–163

[22] Lyakhov L. N., “Preobrazovanie Kipriyanova—Radona”, Tr. Mat. in-ta im. V. A. Steklova RAN., 248 (2005), 144–152 | MR

[23] Lyakhov L. N., “Preobrazovanie Radona—Kipriyanova obobschennogo sfericheskogo srednego znacheniya funktsii”, Mat. zametki., 100:1 (2016), 100–112 | MR | Zbl