An analog of the Paley--Wiener theorem for the Radon $K_\gamma$-transform for integer $|\gamma|$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 104-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study of the Radon transformation based on weighted plane waves was initiated by I. A. Kipriyanov. In this paper, we obtain necessary and sufficient conditions satisfied by the Radon $K_\gamma$-transform of smooth functions that decrease together with all their derivatives.
Keywords: Paley–Wiener theorem, Radon–Kipriyanov transform, inversion of the Radon transform, inversion of the Radon–Kipriyanov transform.
Mots-clés : Radon transform
@article{INTO_2021_193_a10,
     author = {L. N. Lyakhov and M. G. Lapshina},
     title = {An analog of the {Paley--Wiener} theorem for the {Radon} $K_\gamma$-transform for integer $|\gamma|$},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {104--109},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a10/}
}
TY  - JOUR
AU  - L. N. Lyakhov
AU  - M. G. Lapshina
TI  - An analog of the Paley--Wiener theorem for the Radon $K_\gamma$-transform for integer $|\gamma|$
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 104
EP  - 109
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a10/
LA  - ru
ID  - INTO_2021_193_a10
ER  - 
%0 Journal Article
%A L. N. Lyakhov
%A M. G. Lapshina
%T An analog of the Paley--Wiener theorem for the Radon $K_\gamma$-transform for integer $|\gamma|$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 104-109
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a10/
%G ru
%F INTO_2021_193_a10
L. N. Lyakhov; M. G. Lapshina. An analog of the Paley--Wiener theorem for the Radon $K_\gamma$-transform for integer $|\gamma|$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 104-109. http://geodesic.mathdoc.fr/item/INTO_2021_193_a10/

[12] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, GIFML, M., 1962

[13] Gots E. G., Lyakhov L. N., “Obraschenie preobrazovaniya Radona—Kipriyanova posredstvom drobnogo differentsirovaniya Gryunvalda—Letnikova—Rissa”, Dokl. RAN., 412:1 (2006), 11—14 | MR

[14] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, Mir, M., 1958

[15] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1987

[16] Kipriyanov I. A., “O preobrazovaniyakh Fure, Fure—Besselya i Radona”, Dokl. RAN., 360:2 (1998), 157–160 | MR | Zbl

[17] Kipriyanov I. A., Kononenko V. I., “O fundamentalnykh resheniyakh nekotorykh singulyarnykh uravnenii v chastnykh proizvodnykh”, Differ. uravn., 5:8 (1969), 1471–1483

[18] Levitan B. M., “Razlozhenie v ryady i integraly Fure po funktsiyam Besselya”, Usp. mat. nauk., 6:2 (1951), 102–143 | MR | Zbl

[19] Lyakhov L. N., “Ob odnom klasse gipersingulyarnykh integralov”, Dokl. AN SSSR., 315:2 (1990), 291–296 | Zbl

[20] Lyakhov L. N., “Obraschenie V-potentsialov Rissa”, Dokl. RAN., 321:3 (1991), 466–469 | Zbl

[21] Lyakhov L. N., “Obraschenie preobrazovaniya Kipriyanova—Radona”, Dokl. RAN., 399:5 (2004), 153–163

[22] Lyakhov L. N., “Preobrazovanie Kipriyanova—Radona”, Tr. Mat. in-ta im. V. A. Steklova RAN., 248 (2005), 144–152 | MR

[23] Lyakhov L. N., “Preobrazovanie Radona—Kipriyanova obobschennogo sfericheskogo srednego znacheniya funktsii”, Mat. zametki., 100:1 (2016), 100–112 | MR | Zbl