Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_193_a1, author = {M. I. Besova}, title = {Holomorphic regularization in the theory of boundary-value problems}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {11--16}, publisher = {mathdoc}, volume = {193}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a1/} }
TY - JOUR AU - M. I. Besova TI - Holomorphic regularization in the theory of boundary-value problems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 11 EP - 16 VL - 193 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_193_a1/ LA - ru ID - INTO_2021_193_a1 ER -
%0 Journal Article %A M. I. Besova %T Holomorphic regularization in the theory of boundary-value problems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 11-16 %V 193 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_193_a1/ %G ru %F INTO_2021_193_a1
M. I. Besova. Holomorphic regularization in the theory of boundary-value problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 11-16. http://geodesic.mathdoc.fr/item/INTO_2021_193_a1/
[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR
[2] Vasileva A. B., Nefedov N. N., Teoremy sravneniya. Metod differentsialnykh neravenstv Chaplygina, Izd-vo MGU, M., 2007
[3] Kachalov V. I., “Golomorfnaya regulyarizatsiya singulyarno vozmuschennykh zadach”, Vestn. MEI/, 6 (2010), 54–62
[4] Kachalov V. I., “O golomorfnoi regulyarizatsii singulyarno vozmuschennykh sistem differentsialnykh uravnenii”, Zh. vychisl. mat. mat. fiz., 57:4 (2017), 64–71
[5] Kachalov V. I., “Ob odnom metode resheniya singulyarno vozmuschennykh sistem tikhonovskogo tipa”, Izv. vuzov. Mat., 6 (2018), 25–30 | MR | Zbl
[6] Kachalov V. I., Lomov S. A., “Psevdoanaliticheskie resheniya singulyarno vozmuschennykh zadach”, Dokl. RAN., 334:6 (1994), 694–695 | Zbl
[7] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981
[8] Lomov S. A., Lomov I. S., Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo MGU, M., 2011
[9] Chang K. W, Howes F. A, Nonlinear singular perturbation phenomena: theory and applications, Springer-Verlag, New York, 1984 | MR | Zbl