Holomorphic regularization in the theory of boundary-value problems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 11-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of holomorphic regularization of singular perturbations is applied to a boundary-value problem for a second-order equation. We prove that after an precise description of singularities, the regular part of the solution depends analytically on the parameter.
Keywords: Tikhonov system, holomorphic regularization, analytic integral, pseudoholomorphic solution.
@article{INTO_2021_193_a1,
     author = {M. I. Besova},
     title = {Holomorphic regularization in the theory of boundary-value problems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {11--16},
     publisher = {mathdoc},
     volume = {193},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_193_a1/}
}
TY  - JOUR
AU  - M. I. Besova
TI  - Holomorphic regularization in the theory of boundary-value problems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 11
EP  - 16
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_193_a1/
LA  - ru
ID  - INTO_2021_193_a1
ER  - 
%0 Journal Article
%A M. I. Besova
%T Holomorphic regularization in the theory of boundary-value problems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 11-16
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_193_a1/
%G ru
%F INTO_2021_193_a1
M. I. Besova. Holomorphic regularization in the theory of boundary-value problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 4, Tome 193 (2021), pp. 11-16. http://geodesic.mathdoc.fr/item/INTO_2021_193_a1/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR

[2] Vasileva A. B., Nefedov N. N., Teoremy sravneniya. Metod differentsialnykh neravenstv Chaplygina, Izd-vo MGU, M., 2007

[3] Kachalov V. I., “Golomorfnaya regulyarizatsiya singulyarno vozmuschennykh zadach”, Vestn. MEI/, 6 (2010), 54–62

[4] Kachalov V. I., “O golomorfnoi regulyarizatsii singulyarno vozmuschennykh sistem differentsialnykh uravnenii”, Zh. vychisl. mat. mat. fiz., 57:4 (2017), 64–71

[5] Kachalov V. I., “Ob odnom metode resheniya singulyarno vozmuschennykh sistem tikhonovskogo tipa”, Izv. vuzov. Mat., 6 (2018), 25–30 | MR | Zbl

[6] Kachalov V. I., Lomov S. A., “Psevdoanaliticheskie resheniya singulyarno vozmuschennykh zadach”, Dokl. RAN., 334:6 (1994), 694–695 | Zbl

[7] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981

[8] Lomov S. A., Lomov I. S., Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo MGU, M., 2011

[9] Chang K. W, Howes F. A, Nonlinear singular perturbation phenomena: theory and applications, Springer-Verlag, New York, 1984 | MR | Zbl