Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_192_a9, author = {T. Yu. Sapronova and S. L. Tsarev}, title = {Extremals of the {Dirichlet} functional on the manifold of two-dimensional spheroids in {SO(3)}}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {94--101}, publisher = {mathdoc}, volume = {192}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a9/} }
TY - JOUR AU - T. Yu. Sapronova AU - S. L. Tsarev TI - Extremals of the Dirichlet functional on the manifold of two-dimensional spheroids in SO(3) JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 94 EP - 101 VL - 192 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_192_a9/ LA - ru ID - INTO_2021_192_a9 ER -
%0 Journal Article %A T. Yu. Sapronova %A S. L. Tsarev %T Extremals of the Dirichlet functional on the manifold of two-dimensional spheroids in SO(3) %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 94-101 %V 192 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_192_a9/ %G ru %F INTO_2021_192_a9
T. Yu. Sapronova; S. L. Tsarev. Extremals of the Dirichlet functional on the manifold of two-dimensional spheroids in SO(3). Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 94-101. http://geodesic.mathdoc.fr/item/INTO_2021_192_a9/
[1] Atya M., Geometriya i fizika uzlov, Mir, M., 1995
[2] Darinskii B. M., Sapronov Yu. I., Tsarev S. L., “Bifurkatsii ekstremalei fredgolmovykh funktsionalov”, Sovr. mat. Fundam. napr., 12 (2004), 3–140
[3] Dolzhenkov A. A., Sapronov Yu. I., Sapronova T. Yu., “Nelokalnyi bifurkatsionnyi analiz nekotorykh konfiguratsii kirkhgofova sterzhnya”, Matematicheskie modeli i operatornye uravneniya, VGU, Voronezh, 2009, 27–41
[4] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya: metody i prilozheniya, Nauka, M., 1986
[5] Zaitsev V. F., Polyanin A. D., Spravochnik po obyknovennym differentsialnym uravneniyam. Tochnye resheniya, Fizmatlit, M., 1995
[6] Monastyrskii M. I., Topologiya kalibrovochnykh polei i kondensirovannykh sred, PAIMS, M., 1995
[7] Monopoli: Topologicheskie i variatsionnye metody, Mir, M., 1989
[8] Sapronov Yu. I., “Konechnomernye reduktsii v gladkikh ekstremalnykh zadachakh”, Usp. mat. nauk., 51:1 (1996), 101–132
[9] Sapronova T. Yu., “Bifurkatsii ekstremalei iz tochek kriticheskoi orbity pri razrushenii nepreryvnoi simmetrii”, Tr. mat. fak-ta VGU. Nov. ser., 4 (1999), 101–107
[10] Sapronova T. Yu., “O metode kvaziinvariantnykh podmnogoobrazii v teorii fredgolmovykh funktsionalov”, Topologicheskie metody nelineinogo analiza, VGU, Voronezh, 2000, 107–124
[11] Sapronova T. Yu., “O razrushenii kompaktnykh kriticheskikh orbit invariantnykh fredgolmovykh funktsionalov pri nesimmetrichnykh vozmuscheniyakh”, Tr. mat. fak-ta VGU. Nov. ser., 2 (18) (1997), 54–58
[12] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989